Space Sunday: Mars wake-ups, SpaceX and NASA updates

Looking over Utopia Planitia – a panoramic image captured by the mastcams on China’s Zhurong rover ahead of its period of “hibernation” during the October 2021 conjunction. Credit: CNSA/PEC

The 2021 Earth-Sun-Mars conjunction that saw Earth and Mars on opposite sides of the Sun, interrupting all communications between the two, is now over. This means that the multi- national missions on and around the red planet (America, Europe, the UAE, and China) are switching back from automated activities to more regular operations.

China’s Tiawen 1 orbiter and their solar-powered rover surprised mission controllers by calling home earlier than had been anticipated, to report that they are resuming science operations after their enforced semi-hibernation. The wake-ups come in advance of a change in both missions that will be taking place in early November.

At that time, the Tianwen 1 will switch to a new mission phase, a global mapping and analysis of the Martian surface and subsurface with its suite of seven science instruments. This will reduce the opportunities the orbiter has to act as a communications relay for the rover from once a day to once every few days. To help fills the “gaps” when Tianwen 1 is unable to act as a relay, Europe’s long-running Mars Express orbiter is going to attempt to step up to the plate and relay communications between the rover and Earth – pending the outcome of several communications tests to take place at the start of November.

Another view across Utopia Planitia returned by Zhurong. Credit: CNSA/PEC

Down on Mars, the Zhurong rover had covered 1,182 metres from its landing platform before going into stand-by mode for the solar conjunction. Since waking up, it has resumed its trip south in Utopia Planitia, and is approaching the end of its second 90-sol period of operations, opening the door for a re-assessment of its science targets. Of particular interest to Chinese scientist are a series of “mud volcanoes” and features that may have been formed by movements of subsurface water and ice, where Zhurong’s ground-penetrating radar is expected to provide “fundamentally new perspectives” on potential subsurface Martian water ice, that might be applied to any development of past life on Mars and on the use of sub-surface water by future crewed missions.

For NASA’s Ingenuity helicopter, the end of the conjunction means a resumption of flight operations following tests to run its contra-rotating propellers at high-than-usual RPM to counter the thinning density of the atmosphere in Jezero crater as winter approaches.  This flight was initially scheduled for as early as Saturday, October 23rd, but at the time of writing had yet to be confirmed as having taken place.

Meanwhile, NASA has released a new video showcasing many of the sounds of Mars that have thus far been recorded by Ingenuity’s companion on Mars, the Perseverance rover.

“Percy” carries two off-the-shelf microphones, one mounted on it hull, the other on cover on the camera mounting frame located at the top of its instrument mast. Since the rover’s arrival on Mars, both microphones have been used to record a range of sounds both of Mars and of the rover and Ingenuity operating on the planet.

One of the two microphones mounted on the Mars 2020 Perseverance rover. Located on the moveable camera / imager housing at the top of the rover’s mast, this microphone is somewhat directional in nature. Credit: NASA/JPL

The Mars 2020 mission is the first to Mars to carry microphones that allow us to listen to the planet – but their inclusion is not merely due to idle curiosity. Listening to the sounds of the planet and the rover can reveal a lot, as mission scientist Nina Lanza, one of those behind the microphone project, explains:

First, we can learn about the atmosphere by understanding how sound propagates through it. We can also listen to the sounds of rover analyses on rocks and learn about rock material properties from that. And finally, we can also listen to the sounds the rover makes to help better understand the state of our instruments.

– Nina Lanza, Los Alamos National Laboratory

Analysis of the sound picked-up from Ingenuity’s rotors, for example, has revealed that sound propagates through the Martian atmosphere a lot different to how it had been believed. Changes in the sound the rover makes during driving and other operations could also help give an early indication of possible problems / mechanical issues, making the microphones invaluable.

SpaceX Update

With the public hearings into the Federal Aviation Authority’s draft Programmatic Environmental Assessment (PEA) report on the SpaceX “Starbase” production, test and launch facilities in Boca Chica, Texas, now completed, SpaceX continues to push ahead with preparations for its first Starship  / Super Heavy test flight and other work critical to that, and future Starship / Super Heavy launches.

The tank farm that will store and deliver propellants and other consumables to the launch facilities has seen the last of its vertical tanks and their concrete sheathing installed. At the same time as this work was progress, a set of horizontal tanks, thought to be intermediary tanks that may be used to hold propellants, etc., when detanking boosters between things like static firs tests, arrived for installation at the farm.

The Starbase tank farm showing the new horizontal tanks being installed, with the final sleeve for one of the upright tanks waiting to be lifted into position. Credit: RGV Aerial Photography

The launch facility itself has most recently seen the assembly and installation of the gigantic “Mechazilla”, the extraordinary mechanism that will both lift Super Heavy boosters onto the launch table and stack Starships on top of them (as well as being able to remove both from the launch facilities) and  – eventually – actually “catch” returning boosters and Starships, allowing (in theory) both to be rapidly turned around and re-used whilst eliminating the need for either to have complicated and heavy landing leg systems.

“Mechazilla” will achieve this by travelling up and down the launch support tower on three rails whilst having a “head” that can rotate around three side of the tower, and two huge “chopstick” arms than can open and close around a Super Heavy or Starship vehicle, allowing it to raise or lower them – and eventually catch them as they make a (hopefully) precision return to Earth that brings them down alongside the launch support tower.

The massive system will not be used for the first orbital flight attempt with Booster 4 (currently on the launch table) and Starship 20, but may be used in an attempt to catch Booster 5 (currently under construction as the “next generation” of Super Heavy vehicles)  when that launches in 2022. However, captures of Starship vehicles will not be seen for some time.

A rendering of “Mechazilla” and the QD arm mounted on the Super Heavy / Starship launch support tower at Boca Chica. Credit: Owe BL, with additional annotations

Also during the past week, Starship 20 has completed a series of static fire tests of its Raptor engines – including the first firing of a Raptor vacuum engine integrated into a Starship vehicle, and the first joint firing of a vacuum engine and a sea-level motor. Some of the vehicle’s heat shield titles were blown off during the tests, but otherwise the firings were viewed as successful.

Such is the progress at Boca Chica that Elon Musk has indicated the company will be ready to make that first orbital flight in November, pending regulatory approval. However, it would seem unlikely this would be granted in time for a November launch. The review period for the PEA doesn’t close until November 1st, and the public hearings mentioned above drew strong feedback both in support of, and against SpaceX’s expansion of the Boca Chica facilities, with the latter focused on already noticeable environmental issues.

The static fire test of a Raptor single vacuum engine and a single Raptor sea-level motor, marking the first time the both types of motor, integrated into a Starship, have been test fired. Credit: BocaChicaGal / NASASpaceflight.com

After November 1st, the FAA will require time to complete its report, incorporating all of this feedback and a separate report from the U.S. Fish and Wildlife Service. Even if the report is positive, it still has to be reviewed and digested by the arm of the FAA responsible for granting launch licences. Given that November is something of a “short” month in the US due to the Thanksgiving holiday, it seems doubtful the FAA would complete all this work and grant a licence to SpaceX for Super Heavy / Starship flights by the end of the month.

Continue reading “Space Sunday: Mars wake-ups, SpaceX and NASA updates”

Space Sunday: Mars, Starship and a meteor that flattened a city

September 10th, 2021: after successfully gather two samples from the rock dubbed “Rochette” (seen in the foreground, the bore holes clearly visible), the Mars 2020 rover Perseverance paused for a “selfie” using the WATSON imager mounted on the robot arm turret. Credit: NASA/JPL

It’s getting interesting on Mars. Jezero Crater, the home of the Mars 2020 mission is going through a change in seasons, bringing with it a drop in atmospheric density that is proving challenging for the Ingenuity helicopter, which recently completed its 13th flight.

The little drone was designed to fly in an atmosphere density around 1.2-1.5% that of Earth, but with the seasonal change, the average afternoon atmospheric density within the crater – the afternoon being the most stable period of the day for Ingenuity to take flight – has now dropped to around 1% that of Earth. This potentially leaves the helicopter unable to generate enough lift through its rotors to remain airborne.

The solution for this is to increase the rate of spin within rotors to something in excess of their nominal speed of around 2,500-2,550 rpm. However, this is not without risk: higher rpm runs the risk of a significant increase in vibrations through the helicopter that could adversely affect its science and flight systems. Also, depending on the wind, it could result in the propeller blades exceeding 80% of the Martian speed of sound. Sound this happen, the rotor would pick up enough drag to counter their ability to generate lift, leading to a mid-flight stall and crash.

To better evaluate handling and flight characteristics, therefore, the flight team are going back to basics an re-treading the steps taken to prepare Ingenuity for flight. This will see the propellers spun to 2,800 rpm with the helicopter remaining on the ground. Data gathered from this test will be used to make an initial assessment of blade speed required to get Ingenuity off the ground – believed to be somewhere between 2,700 and 2,800 rpm, and make an initial assessment of vibration passing through the helicopter’s frame. After this, it is planned to carry out a very simple flight: rise to no more than 5 metres, translate to horizontal flight for no more that a few metres, then land. Data from this flight – if successful – will then be used in an attempt to determine the best operating parameters for Ingenuity going forward.

The power of Perseverance’s camera: The lower image shows a true colour view of a feature dubbed “Delta Scarp”, captured by the rover’s MastCam Z system from a distance of 2.25 km. The upper picture shows details of the feature, as captured from the same distance, using the rover’s SuperCam instrument.. Credit: NASA/JPL

In the meantime, the Perseverance rover is continuing its work. Following the successful gathering of its first ample, the rover has been further revealing the power of its imaging systems, Mastcam Z and SuperCam, the two camera system mounted on its main mast.

Designed for different tasks, the two systems nevertheless work well together to provide contextual and up-close images of features the rover spies from distances in excess of 2 km away, allowing science teams to carry out detailed assessments before sending the rover to take a closer look. Also, in the wake of the sample gather exercise at the rock dubbed “Rochette”, NASA have provided a general introduction to two more of the rover’s instruments, which are mounted on the turret at the end of the rover’s robot arm. Catch the video below for more.

At the same time, and half a world away, the InSight mission Lander, despite suffering a severe degrading of its power capabilities as dust continues to accumulate on its circular solar arrays, has detected a  powerful Marsquake less than a month after detecting two equally powerful quakes originating at two different point under the planet’s surface.

All three were the latest in a long like of Marsquakes – also called “tumblors” – that have revealed much about the planet’s interior in the almost three years since InSight placed its seismometer on the planet’s surface, including the fact its core is larger than had been believed. The vast majority of the tumblors thus far detected have originated in the  Cerberus Fossae region of Mars, some 1,600 km from the lander. However, on August 25th, a quake measuring 4.1 magnitude was recorded with an epicentre just 925 km from the lander whilst marking it as the most powerful tremblor Insight had recorded (the previous record holder measure 3.7 – five times less powerful).

Captured in July 2021, this image shows InSight’s Seismic Experiment for Interior Structure (SEIS) instrument dome on the surface of Mars. This is the instrument that has been recording tremblors on Mars. Credit: NASA/JPL

But then on the same day, a second quake was detected, hitting 4.2 magnitude, marking it particularly powerful, given its epicentre was calculated to be 8,600 km from the lander, and possibly focused within Vallis Marineris, the “Grand Canyon of Mars. This was matched on September 18th by a further 4.2 magnitude quake – epicentre currently unknown. But what made this tremblor remarkable was its duration – almost 90 minutes! (By comparison, the longest recorded duration of an quake on Earth is under 5 minutes.) Exactly why and how such an event should or could last so long is unknown, and has the InSight science teams scratching their heads.

Did a Cosmic Event Give Rise to the Biblical Legend of Sodom and Gomorrah?

Tall el-Hammam was – up until 3,600 years ago – a thriving centre of life and commerce for an estimated 8,000 people. Located close to the Dead Sea in what is now modern day Jordan, the valley it occupied lay some  22 km west of the city of Jericho and was one of the most productive agricultural lands in the region before being practically deserted for some 500-700 years, the soil inundated with salts to the extent nothing would grow.

The location of the city has been subject to archaeological study since 2005, and researchers there have been struck by the curious nature of what little remains of the city: foundations with melted mud brick fragments, melted pottery, ash, charcoal, charred seeds, and burned textiles, all intermixed with pulverised mud brick and minerals that can only be produced under extremes of temperature and / or pressure. The more the city’s ruins were uncovered, the more the evidence pointed to some terrible calamity having befallen Tall el-Hammam and its surroundings, prompting the archaeologists to call in experts from the field of astronomy, geology, and physics. Their research has lead to the conclusion that the city was practically at the epicentre of a “cosmic airburst”.

Moment of detonation: an artist’s (rather mild) interpretation of the moment a 50m diameter chunk of rock travelling at 61,000 km/h detonated in the skies above Tall el-Hammam, Jordan, 3,600 years ago in a 15 megaton blast that obliterated the city in seconds. Credit: Allen West and Jennifer Rice, CC BY-ND

In short, 3,600 years ago, a piece of rock probably 50 metres across slammed into the atmosphere at 61,000 km/h. It survived the initial entry and fell to an altitude of approximately 4km above Tall el-Hammam before air resistance finally overcame its integrity. The result was a  15 megaton explosion that instant drove air temperatures to around 2,000ºC, enough to instantly flash-burn textiles, wood and flesh, and melt everything from swords and bronze tools to pottery and mud brick.

Seconds later, the shockwave from the explosion struck the city. Travelling at 1,200 km/h, it utterly pulverised what was not already aflame. Roughly a minute after the explosion, that same shockwave rolled over the city of Jericho, probably demolishing a good portion of its defensive wall and the buildings within it. That same shockwave also impacted the Dead Sea, potentially lifting vast amounts of salt water into the air, which rained back down over the valley, rendering it infertile for the next few hundred years, until rainfall could wash the salts out of the top soils.

The evidence for the cataclysm comes in multiple forms, from the melted pottery and mud brick through the clear evidence the city was pulverised in a manner that left a clearly defined “destruction layer” within the ruins, to the fact that within those ruins are deposits of shocked quartz, which are only formed when grains of sand are compressed with of force of 725,000 psi, and microscopic diamondoids, produced when carbon materials (e.g. plants, wood, etc.), are simultaneously exposed to massive extremes of temperature and pressure, and are a hallmark of ancient impact sites around the world.

A satellite image of the Middle East, showing the location of Tall el-Hammam on the northern coastal area of the Dead Sea. Satellite image via NASA

The ruins bring home the very real risk posed by near-Earth objects as they zap around the Sun, crossing and re-crossing Earth’s orbit. That a cosmic object also brought about the destruction of a small city and its 8,00 inhabitants raises the question of whether someone witnessed the event (obviously from many kilometres away) or its aftermath, and the telling and re-telling of the tale of destruction eventually morphed into the Biblical tale Sodom and Gomorrah, the two “cities of the plains” of the Dead Sea (and therefore potentially close to the site of Tall el-Hammam), supposedly destroyed by God in a rain of fire and rock falling from the sky.

Continue reading “Space Sunday: Mars, Starship and a meteor that flattened a city”

Space Sunday: rovers, rockets and telescopes

An image of a ridge line on the flank of “Mount Sharp” (Aeolis Mons) captured by MSL rover Curiosity on Sol 3167 (July 4th, 2021). A CGI model – to scale – of the rover has been superimposed on the image to show how the rover’s climb up the ridge might appear to someone watching it. Credit: NASA/JPL with additions by Seán Doran

Rovers on Mars continue to been busy as they trundle around the planet. While it has been there the longest, NASA’s Mars Science Laboratory (MSL) rover Curiosity has been somewhat out of the news, courtesy of it’s sister Perseverance and China’s Zhurong. However, it has recently re-grabbed the science news headlines thanks to a couple of studies.

Methane blips have pinged on Curiosity’s Tunable Laser Spectrometer (TLS) six times since the rover landed in Mars’ Gale crater in August 2012. These events have been seen as important, because methane is the by-product of two processes that share equal interest to scientists, because one is the result of organic processes – life – and the other, though inorganic in nature, points to geological activity closely tied to the presence of liquid water, a vital ingredient for past or present life as we know it to thrive.

A critical factor with methane is that once exposed to sunlight, it breaks down over a period of just 300-330 years, so for Curiosity to be able to detect it, it must have come from a relatively recent source – one that still may be active. The problem until now has been to locate that source – or even confirm Curiosity’s findings.

The European Space Agency’s Trace Gas Orbiter, part of the ExoMars mission, and currently studying Mars. Credit: ESA

The best placed tools for doing the latter are aboard the European Space Agency’s Trace Gas Orbiter (TGO), but to date, TGO has been unable to detect any methane within Gale Crater. The could either be because there isn’t any methane to be found, or the minute amounts  – just 10 parts per billion (10 ppb) – is too small and too localised for TGO to accurately detect from orbit, and Curiosity just happens to be sitting practically on top of it.

In one of two reports released in June, members of the MSL’s extended science team they have pin-pointed the source location for the methane, and that the rover happened to arrive in Gale Crater at a point extremely close to it.

This was done by treating each point of detection as a discrete packet of methane, then calculating the wind speed and direction at the time it was detected. This allowed them to trace the parcels back through time to their possible points of emission. By doing this for all of the different detection spikes, they were able to triangulate regions where the methane source is most likely located- and one of them is just a few tens of kilometres to the north-west of “Mount Sharp” and Curiosity’s area of exploration.

Sadly while tantalisingly close to the rover, the point is still well outside of Curiosity’s route of exploration.

MSL Curiosity, imaged by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter, on April 18, 2021. Credit: NASA/JPL

A second study coming out of Curiosity’s science data suggests that a process has been at work on Mars that has been both eradicating evidence for possible past life on Mars – and creation conditions in which new life might arise.

In short, when reviewing the result of samples taken of ancient mudstone, a sedimentary rock containing clay, taken from two points just 400 metres apart and believed to have both been laid down some 3.5 billion years ago. Both should have been very similar in nature, rich in clay, an important element in the search for life, as it is both created in the presence of water and is an excellent medium for storing microbial fossils. However, one of the samples contained just half the anticipated amount of clay minerals in comparison to the other, but a much higher concentration of iron oxides –  the compounds that give Mars its rusty hue.

The researchers behind this discovery believe it is the result of one of the two areas of mudstone being exposed to brine: salty water that leaked into the mineral-rich mudstone and effectively leached the clays and other minerals out of them, effectively eradicating both the geological and possibly the biological record that might otherwise be present in the deposits. Given that evidence of potentially brine-rich outflows have been found elsewhere on Mars, this study suggests this process might be common to regions of the planet believed to have once housed bodies of water, possibly destroying any evidence of past life.

However, the process – called diagenesis – is not all bad news. While it may well help erase any record of past organic activity from parts of the surface or Mars, it may also have triggered new life processes under the surface, the salty water being a source of potential energy that could help kick-start new organic processes.

Image of the “Raised Ridges” that Ingenuity captured on its ninth flight. Credit – NASA / JPL

The findings of both of these studies are being used to inform the science mission of NASA’s latest Mars rover, Perseverance, allowing the science team to apply what has been found in Gale Crater to Jezero Crater, to better direct that rover towards places of interest.

“Percy”, to use the nickname for NASA’s latest Mars rover is also being assist in finding places of interest – and the best route to them – by the Ingenuity helicopter. This has now completed its 9th flight , during which it acted directly as an aerial scout for the rover, including the “Raised Ridges”, a feature that suggests it may one once had a water channel beneath it. Ingenuity has also identified a dune field that could result in “Percy” becoming bogged down – as happened with the MER Spirit rover in 2009/10 – ending its mission.

What is particularly fascinating about this work is that the information gathered by Ingenuity can be fed back to Perseverance and used by its auto-drive system to identify local hazards – rocks, etc – the rover can then navigate itself around without having to “‘phone home” for assistance from the Earth-based driving team.

Ingenuity’s view of the “Séítah” dune field on it’s ninth flight. Part of the helicopter’s landing gear can be seen on the left side of the screen. Credit: NASA / JPL 

Meanwhile, China’s Zhurong rover is now 2/3rds of the way through its initial 92-day / 90 Sol mission. During that time, the rover has travelled a total of 450 metres, and on July 12th, 2021, it arrived at a special point of study – but one that is neither geological nor meteorological / atmospheric, the rover’s primary science interest.

Instead, the rover had arrived at the impact / landing point for the backshell and parachute that had helped it to reach the ground safely. Following it separation from these during descent, the rover had moved away from it under the power of its lander’s rocket motors ready to make a soft landing. The backshell and parachute continued downward to eventually land some 350 metres from the lander / rover.

Studying both the backshell and parachute helped engineers understand how well both handled the descent through the Martian atmosphere, something that can help inform future missions. At the same time, the rover imaged raised mounds in the region, which could be inverted impact craters or possibly small volcanic domes or other features could be the result of tectonic activity – their nature has yet to be made clear (one of which has been incorrectly labelled as a “outflow delta” in the video below).

Continue reading “Space Sunday: rovers, rockets and telescopes”

Space Sunday: balloons to space, Mars movies and alien water clouds

Space Perspective: balloon rides to (almost) the edge of space (see below). Credit: Space Perspective

Virgin Galactic is now very close to commencing passenger-carrying sub-orbital flights with their SpaceShipTwo vehicle after the Federal Aviation Administration (FAA) updated the company’s existing launch licence which had previously restricted them to only flying a crew and “non-deployable” payloads aboard the vehicle.

The updated licence was awarded on June 25th, after the FAA had completed a review of the May 22nd SpaceShipTwo test flight, the first such flight to be flown from Spaceport America in New Mexico, Virgin Galactic’s base for commercial operations in the United States.

The granting of the licence doesn’t mean passenger flights will be commencing immediately, however. The company has three more test flights to complete, some of which will see them flying additional crew aboard the vehicles to help gain further experience in flying with a full compliment of people on the vehicle. One of these flights is liable to include Virgin Galactic’s founder, Sir Richard Branson.

We’re incredibly pleased with the results of our most recent test flight, which achieved our stated flight test objectives. Today’s approval by the FAA of our full commercial launch license, in conjunction with the success of our May 22 test flight, give us confidence as we proceed toward our first fully crewed test flight this summer.

-Michael Colglazier, Chief Executive, Virgin Galactic

Virgin Galactic SpaceShipTwo VSS Unity drops clear of the MSS Eve carrier aircraft at the start of the May 22nd test flight over New Mexico, data from which led to the FAA updating the company’s licence to fly the craft. Credit: Virgin Galactic

The price of a ticket for a 90-minute flight with Virgin Galactic is estimated to be US $250,000 – although this figure was first given in 2014, and may have changed in the interim, and the company hopes to bring the cost down to around US $40,000 within a decade. In the meantime, the likes of Angelina Jolie, Brad Pitt, Lady Gaga and Leonardo DiCaprio are said to be among the rumoured 700 initial bookings.

Given the additional test flights, Virgin Galactic will probably not start fare-paying flights until after Blue Origin has completed its first passenger flight. This is due to take place on July 20th, the 55th anniversary of Apollo 11 landing on the Moon, and will include one individual (yet to be named) who has paid US $28 million to be a passenger (see: Space Sunday: selfies, missions, budgets and rockets).

VSS Imagine, the first of of the SpaceShip III vehicle Virgin Galactic plan to operate, was rolled out on 30rh March, 2021. It will be followed by VSS Inspire, currently under construction. These are an updated design of the SpaceShipTwo vehicle the company has been flying to date, but have yet to be test flown. Credit: Virgin Galactic

Nor are space vehicles alone to be used for high altitude tourism. Space Perspective, a relatively new space tourism company, being founded in 2019, has confirmed it plans to offer flights of up to six hours in duration and to a maximum altitude of 32 km starting in 2024 using a balloon and capsule system.

The nature of the flights mean passengers will not experience a micro-gravity environment during the flight, but they will travel high enough to clearly see the planet’s curvature, and their experience will be a lot more sedate and with greater comfort.

This is because ascents will be at a gentle 20km an hour, thus taking 90 minutes to reach their maximum altitude,  and the capsule will offer comfortable couches, room to move around, a bar and provide wi-fi connectivity with the ground. Once at altitude, the balloon will remain aloft for around 2 hours, prior to commencing a descent, splashing down close to a support ship that will lift the capsule out of the water to allow the passengers disembark, prior to them being returned to shore.

How Space Perspective plan to operate their balloon flights. Credit: Space Perspective

Space Perspective first announced their plans over a year ago, and on June 18th, they carried out a test flight of their Neptune One scale prototype capsule over Florida. In a 6-hour 39-minute flight, the capsule, slung beneath a helium balloon, lifted-off in the early morning, rising to a maximum altitude of over 33 km.  After two hours, and in what mirrors planned operational flight, it then descended over the Gulf of Mexico to splash down 80 km off the coast of Florida, where it was recovered by ship.

This test flight of Neptune One kicks off our extensive test flight campaign, which will be extremely robust because we can perform tests without a pilot, making Spaceship Neptune an extremely safe way to go to space.

– Taber MacCallum, Co-CEO, Space Perspective

As well as passengers, Space Perspective plan to offer room aboard the capsule(s) for those wishing to carry out high-altitude studies of the atmosphere and weather.

An image released by Space Perspective and captured by a camera aboard their Neptune One scale prototype, some 33 km above the surface of Earth. Credit: Space Perspective

Hubble Still Down as Glitch Proves Hard to Resolve

NASA is continuing to diagnose a problem on the Hubble Space Telescope (HST). As I noted in my previous Space Sunday report, the primary payload computer stopped responding on June 13th, causing the science instruments to enter a “safe” mode. At the time, it was believed the problem was caused  by a fault with one of the computer’s four 64 Kb read/write  memory modules. however, and as I reported, an attempt to switch to using one of the other memory modules was unsuccessful.

As a result, further tests were carried out on June 23rd / 24th, with mixed results. On the one hand, they revealed that the core elements of the computer and its back-up, including the memory modules, have no significant issues. However, the tests also showed attempts to write data to any of the memory modules from either computer were failing.

NASA continues to try to diagnose the Hubble space Telescope’s recent issues. Credit: NASA

This tends to suggest the problem lies outside of the payload computers, so plans are being drawn-up to test other systems.

Chief among these are the Command Unit/Science Data Formatter (CU/SDF) and the primary power regulator circuits. The CU/SDF relays command through HST to specific systems and instruments, and also reformats data from the science instruments ready for transmission to Earth, while the main power regulator should deliver a consistent voltage to systems and instruments. If either are subject to issues, then they can trigger a switch to safe mode operations, as has happened. If the root cause can be traced to either, NASA will test the back-up and attempt a switch-over.

Continue reading “Space Sunday: balloons to space, Mars movies and alien water clouds”

Space Sunday: selfies, missions, budgets and rockets

Zhurong and its lander. Credit: CNSA

You would be forgiven for thinking the banner image for this update is an artist’s impression of China’s Zhurong rover and its lander on Mars. But you’d be wrong – the image really was taken on Mars.

It is part of a batch of images the China National Space Administration (CNSA) have released charting the recent activities of their rover on the Red planet, and they are as remarkable as anything seen with the US rover vehicles, with others showing panoramic views around the rover and shots of its lander vehicle.

The Zhurong lander, part of China’s Tianwen-1 Mars mission., as seen from the rover vehicle at a distance of some 6 metres. Credit: CNSA

Captured on June 8th, the image of rover and lander was taken by a remote camera originally stowed in Zhurong’s belly, and which had been safely deposited on the surface of Mars some 10 metres from the lander, allowing mission control to remote capture the unique sight of a rover and its lander side-by-side.

Zhurong has now completed the first third of its initial 90-day mission on Mars, and is well into its survey of its surroundings within Utopia Planitia. In addition to the high-resolution cameras, used to produce these images, the rover is fitted with a subsurface radar instrument, a multi-spectral camera and surface composition detector, a magnetic field detector and a weather monitor.

A 360 panorama of the Zhurong landing site, captured by the Chinese rover prior to is descent from the back of its lander. Credit; CNSA

Ahead of the images released by CNSA, NASA released their own image of the Chinese rover and lander as seen by the HiRISE camera on the Mars Reconnaissance Orbiter  from an altitude of around 400 km.

Taken on June 6th, three weeks after Zhurong touched-down, the image clearly shows green-tinted lander (a result of the image processing, not the actual colour of the lander) sitting between two areas of surface material discoloured by the thrust of the lander’s outward-angled descent and landing motors. Zhurong itself can be seen a short way south of the lander, within the eastern arc of discolouration.

Captured by the HiRISE imager on NASA’s Mars Reconnaissance Orbiter on June 6th, this image shows the Zhurong lander surrounded by surface material discoloured by the lander’s rocket motors, with the rover sitting just to the south. Credit: NASA/JPL

And turning to NASA’s surface mission on Mars (specifically Mars 2020): on June 8th, the Ingenuity helicopter completed a 7th flight, this one error-free.

Lifting off at around 12:34 local mean solar time (roughly 15:54 UTC on Earth) proceeded south during the 63-second flight, covering a distance of around 106 metres before touching down at a new location.

Ingenuity captured this image of its shadow passing over the surface of Mars on June 8th, 2021 during its 7th flight. Credit: NASA/JPL

In difference to the 6th flight on May 22nd, which saw the helicopter encounter some anomalies (see: Space Sunday: Martian Clouds, Lunar missions and a Space Station), the seventh flight was completed with incident, once again raising confidence that the helicopter will be able to continue flying several more times.

Overlaid onto an image be NASA’s Mars Reconnaissance Orbiter are the routes for the first and second science sorties to be made by Perseverance. Credit: NASA/JPL

Now regarded as fully commissioned, Perseverance has put its duties as caretaker-watcher for Ingenuity largely behind it, as is now driving south and away its landing zone on its way to study a 4 square kilometre of crater floor, where it will examine two very different geological units and collect samples for analysis and for storage and possible return to Earth as part of a future mission.

“Crater Floor Fractured Rough” is a region of ancient bedrock, whilst “Séítah” (Navajo for “amidst the sand”) presents a mix of bedrock overlaid with more recent ridges and also sand dunes. The rover will perform a gentle loop through these areas, visiting “Crater Floor Fractured Rough” first then travelling through the ridgelands and then back up through “Séítah S” and Séítah N”, before heading for its next target, an area dubbed “Three Fours”.

ESA Looks to Venus and the Outer Planets

The European Space Agency has announced its goals for the next several decades in terms of robotic exploration of the solar system and cosmic science.

Announce on June 10th, the EnVision mission will carry a suite of spectrometers, sounders and a radar to study the interior, surface and atmosphere of Venus. The target launch period is May 2032, with the vehicle arriving in orbit around Venus in August 2033, where it will use the planet’s upper atmosphere to aerobrake into its final science orbit over a 3-year period, before commencing its four-year primary mission. It  is expected to cost around 500 million Euros.

ESA plans to further extend our knowledge and understanding of Venus with the EnVision mission, due to launch in 2032. Credit: ESA

While there has been no coordination between NASA and ESA in terms of mission selection, EnVision’s science mission is highly complementary to the two NASA missions – VERITAS and DAVINCI+ – also recently announced, covering aspects of Venus science they do not. Further, ESA will be flying science packages on VERITAS, and NASA will be providing the synthetic aperture radar for EnVision.

EnVision is the fifth M-class mission ESA has selected as part of the Cosmic Vision program. The first, Solar Orbiter, was launched in February 2020, and three others are in development: Euclid, a mission to map dark matter and dark energy to launch in 2022; Plato, an exoplanet search mission launching in 2026; and Ariel, an exoplanet characterisation mission launching in 2029.

In addition To EnVision, ESA intends to spend the next several decades developing  missions to follow after the Jupiter Icy Moons Explorer, that will help assess the habitability of the icy moons in the outer solar system and seek any biosignatures they may have. At the same time ESA intends to support further science endeavours aimed at increasing our understanding of our own galaxy and the likely state and development of the early universe.

Continue reading “Space Sunday: selfies, missions, budgets and rockets”

Space Sunday: Martian clouds, lunar missions and a space station

NASA’s Curiosity Mars rover captured these clouds during the twilight period on March 19, 2021, the 3,063rd Martian day, or sol, of the rover’s mission. The image is made up of 21 individual images stitched together and colour corrected so that the scene appears as it would to the human eye. The clouds are drifting over “Mont Mercou,” a cliff face that Curiosity has been studying on “Mount Sharp”. Credit: NASA/JPL

Clouds are rare on Mars, but they can form, being typically found at the planet’s equator in the coldest time of year, when Mars is the farthest from the Sun in its oval-shaped orbit. However, in 2019 – a year ago in Martian terms – the Mars Science Laboratory team managing NASA’s Curiosity rover in Gale Crater noticed the clouds there forming earlier than expected.

With the onset of winter in the region earlier in 2021, the MSL team wanted to be ready in case the same thing happened, training the rovers cameras on the sky around “Mount Sharp” to catch any evening cloud formations that might appear as the tenuous atmosphere cooled towards night-time temperatures.

Clouds moving over Mount Sharp, as captured by Curiosity on March 19th, 2021. Credit: NASA/JPL

What resulted are images of wispy puffs filled with ice crystals that scattered light from the setting Sun, some of them shimmering with colour. Visible through both the black-and-white lenses of the rover’s navigation cameras and the high-resolution lenses of the Mastcam system, the pictures captured by Curiosity might easily be mistaken for high-altitude clouds here on Earth.

And high altitude is precisely the term to use for this clouds. Most clouds on Mars largely comprise water vapour and water ice. They tend to occur some 60 km above the planet, although they can occur much lower – the massive shield volcano of Olympus Mons, for example, has oft been images with cloud formations around its  flanks, the product of differing atmospheric temperature regimes on the slopes.

However, the clouds seen by Curiosity are believed to be far higher than 60 km in the Martian atmosphere, and are thought to be largely composed of frozen carbon dioxide (dry ice). They occur during the twilight hours – although the mechanism that gives rise to them is not fully understood; but they are thin enough for sunlight to pass through them, catching the ice crystals and causing them to shimmer for a time before the Sun drops below their altitude, causing them to darken. This effect gives them their name: noctilucent  (“night shining”) clouds.

These clouds are best seen in the black and white images captured by the rover’s Navcams, as shown here. However, there is a second form of clouds best seen via Curiosity’s Mastcam colour images. These are iridescent, or “mother of pearl” clouds, rich in pastel colours.

Mother of Pearl clouds spotted by Curiosity in March 2021. Credit: NASA/JPL

They are the result of the cloud particles all being nearly identical in size, something that tends to happen just after the clouds have formed and have grown at the same rate. The colours are so clear, were you able to stand on Mars and look at the clouds, you’d see the shades with your naked eye, and they are another part of the beauty of Mars.

Ingenuity Hiccups During Sixth Flight

NASA’s Mars helicopter Ingenuity encountered some trouble on its sixth flight – the first flight of its extended mission  – on May 22nd.

The flight should have seen the helicopter climb to a height of 10 metres, then fly some 150 metres south-west of its starting point to reach a point of interest where it would travel south for 15 metres, imaging the terrain around and below it for study by scientists on Earth, before making a return to a point close to where it lifted-off.

This image was taken from the height of 10 metres by NASA’s Ingenuity Mars helicopter during its sixth flight on May 22, 2021. Credit: NASA/JPL

The flight was designed to be the first specifically targeted at testing the helicopter’s ability to be used in support of ground operations on Mars, offering the mission team the chance to determine if the area images might be worth a future foray by the Mars 2020 Perseverance rover.

However, 54 seconds into the flight, Ingenuity suffered a glitch that interrupted the flow of images from its navigation camera to its onboard computer. This meant that each time the navigation algorithm performed a correction based on a navigation image, it was operating on the basis of incorrect information about when the image was taken, leading to incorrect assumptions about where it was and what it should be doing.

This lead to Ingenuity pitching and rolling more than 20 degrees at some points during the flight as it struggled to return to its landing zone, post-flight telemetry revealed the helicopter experienced some significant power consumption spikes. However, it maintained its flight and  executed a safe landing just 5 metres from the intended touch-down point.

In a very real sense, Ingenuity muscled through the situation, and while the flight uncovered a timing vulnerability that will now have to be addressed, it also confirmed the robustness of the system in multiple ways. While we did not intentionally plan such a stressful flight, NASA now has flight data probing the outer reaches of the helicopter’s performance envelope That data will be carefully analysed in the time ahead, expanding our reservoir of knowledge about flying helicopters on Mars.

Håvard Grip, Ingenuity’s chief pilot.

Making the Moon a Busy Place

It’s starting to look like the Moon is going to be a terribly busy place. NASA’s Artemis programme is gathering pace in several areas – despite a degree of in-fighting among the principal US contractors – Russia and China have signed an accord that is liable to see them operating in the lunar south pole regions alongside the US-led mission (although the two will remain separate mission entities), whilst Canada and Japan have announced missions to the Moon as a part of the overall Artemis framework, and NASA is seeking ideas from lunar rover vehicles.

The in-fighting revolves around NASA’s April announcement that SpaceX will be granted a sole contract to develop the HLS – Human Landing System – the vehicle that will place humans on the surface of the Moon and return them to orbit. It was a contentious decision; the US agency had previously indicated that two contracts for HLS would be granted, with three players involved: a team led by Jeff Bezos’ Blue Origin, a team led by Dynetics, and the late-comer to the party, SpaceX.

The three proposals for NASA’s Human Landing System vehicles that had been under consideration for the Artemis programme. Left: the Dynetics lander / ascent vehicle; centre: the modified SpaceX Starship NASA has opted for; right: the National Team’s descent / ascent modules. Credit: NASA

There were several leading reasons for the decision – including the matter of cost. However, both Dynetics (potentially with the most flexible approach to HLS) and Blue Origin raised objections with the Government Accountability Office (GAO), which ordered NASA to cease any financial support to SpaceX (worth a total of US $2.9 billion) to the SpaceX effort until it has completed an investigation.

The US Senate has also weighed-in on the subject, with Senator Maria Cantwell (D-Wash.), chair of the Senate Commerce, Science and Transportation Committee, adding an amendment to the Endless Frontier Act which forms the backbone for financing the Artemis programme, requiring NASA put a further US $10 billion into HLS – whilst Senator Bernie Sanders (D-Vermont) went the other way by calling for the cancellation of the entire HLS programme, wrongly characterising it as the “Bezos Bailout”, and so doing what he does best; creating further division and confusion.

As it is, the GAO will release its findings on the matter in August, and while it is hard to ascertain the impact of the delay, it would likely further diminish NASA’s chances of achieving the original goal of a return to the Moon by the end of 2024.

NASA’s Nancy Grace Roman Space Telescope has been targeted for continued financial support by the Biden administration, potentially ending ill-conceived attempts by the previous administration to axe the project.  Credit: NASA Goddard Space Flight Centre / CI Lab

Continue reading “Space Sunday: Martian clouds, lunar missions and a space station”