
NASA’s latest rover arrived on Mars on February 18th, 2021 as the core part of the agency’s Mars 2020 mission, the rover Perseverance, arrived on the red planet (see: Space Sunday: ‘Perseverance will get you anywhere’ and Space update: 2020 landing video and audio of the Martian wind). Since then, work has been continuing in commissioning the rover ready to start its science operations, and it has continued to return images of its new home in Jezero Crater. And as has now been widely reported, it gave Internet sleuths a coded message to decode.
This came in the form of the red and white markings on the mission’s supersonic parachute. Intended to provide data on how the parachute unfurled and performed, it also contained a message in binary code – something hinted at by Allen Chen, the Entry, Descent and Landing lead for the mission whist referencing the parachute’s performance during the February 22nd press briefing I reported on in the second of the two articles noted above.
In addition to enabling incredible science, we hope our efforts in our engineering can inspire others. Sometimes we leave messages in our work for others to find for that purpose, so we invite you all to give it a shot and show your work.
– Allen Chen, the Mars 2020 EDL lead, February 22nd

The message, in binary code, was cracked in six hours, proving to the saying Dare Mighty Things, a phrase attributed to Theodore Roosevelt, the 26th President of the United States and the adopted motto of the Jet Propulsion Laboratory, responsible for the mission, together with the latitude and longitude of JPL’s offices in Pasadena, California.
Nor is the only coded message the rover carries. While its wheels are of an improved design over those used on the Curiosity rover – which celebrated 3,000 days of continuous operations on Mars on January 12th, 2021 – the wheels on Perseverance also carry the letters “JPL” cut into their treads in Morse code.
Other curios carried by the rover include a “family portrait” of NASA rover types that run from tiny Sojourner, which arrived on Mars in 1998 as a part of the Mars Pathfinder mission, through the twins of Spirit and Opportunity Mars Exploration Rover mission, to Curiosity and Perseverance. Like a plaque to healthcare workers around the globe, this is something of a decorative / commemorative piece.

Another of the commemorative piece son the rover is a panel on which are mounted the three microchips that contain the names of the 10,932,295 people who applied to have their name included in the mission (you can also apply to have your name included in future missions), which located on the rover’s aft cross-beam, above its nuclear power supply.
Some of the curios also fulfil a practical use. For example, the SHERLOC ultraviolet Raman spectrometer mounted on the rover’s robot arm includes five samples of materials that may be used in future spacesuits that may be used on Mars.

The intent of these samples is to test how the materials in them react to the Martian environment; however one of them – made of the materials used in helmet visors contains behind it a geocache inscribed with the address of the instrument’s fictional name-sake (221B Baker Street).
Mounted on the deck of the rover is a camera calibration target. Located between the colour and reflective marks on the outer ring of the calibration target are a series of symbols representing life on Earth which is intended to reflect the mission’s primary goal of looking for evidence of past life on Mars, whilst the Mastcam-Z system on the rover includes the massage:
Are we alone? We came here to look for signs of life, and to collect samples of Mars for study on Earth. To those who follow, we wish a safe journey and the joy of discovery.
– from the Perseverance rover

Since its arrival at Jezero Crater, Perseverance has returned thousands of images of its surroundings, commissioning and testing continues. It’ll still be another couple of weeks or so before the surface mission properly commences. These have revealed that in coming down roughly 2km from the mid-point of its landing area – a remarkable achievement in itself -the rover has found itself in a rich geological playground, including features formed by both the passage of water and wind.
Some, such as “Seal Harbour Rock” – most likely formed by the passage of wind – already has geologist excited.
Are these volcanic rocks? Are these carbonate rocks? Are these something else? Do they have coatings on them? We don’t know – yet. We don’t have any chemical data or mineral data on them; but, boy, they’re certainly interesting, and part of the story about what’s going on here is going to be told when we get more detailed information on these rocks and some of the other materials in this area.
– Jim Bell, School of Earth and Space Exploration, Arizona State University

China Starts Preparations for Rover Landing
Having arrived in Mars orbit the week before Mars 2020 made its Martian debut, China’s Tianwen-1 mission as entered a temporary parking orbit around Mars in anticipation of landing a rover on the planet’s surface in the coming months.
Comprising an orbiter vehicle, a lander and the rover, Tianwen-1 is China’s first interplanetary mission, Tianwen-1 will remain in its new circular orbit for around 3 months. During this time the orbiter, alongside of its main science programme, will collect high-resolution images of the surface of Mars, notably of the proposed landing site for the lander/rover combination.

The landing itself will follow a similar profile to those of NASA’s Pathfinder and MER missions: after entry into the atmosphere, the lander/rover will be slowed by parachute, with the final part of the decent using rocket motors to reduce speed before airbags are inflated to protect the vehicles through landing.
If successful, the lander will deploy the solar-powered rover, which will collect data on underground water and look for evidence that the planet may have once harboured microscopic life.
Continue reading “Space Sunday: Mars, starships, rockets and spaceplanes”