Space Sunday: starships, helicopters and rockets

A camera close to the landing zone captures Starship SN15 with two good Raptor motor burns bringing it into a safe landing on May 5th. Credit: SpaceX

SpaceX has achieved its first successful landing of a Starship prototype after Starship SN15 was launched on May 5th, 2021.

The vehicle was the fifth full-scale prototype of the vehicle SpaceX intends to use on missions to Mars – and so much more – with the previous four, prototypes SN8, SN9, SN10 and SN11 all having suffered failures of various descriptions: SN8 came in too “hot” blowing up as it hit the landing pad; SN9 encountered motor issues that lead to being unable to remain upright so it also crashed into the landing pad; SN10 actually made a touch-down, but issues with one of its motors meant it blew up shortly afterwards; and SN11 exploded prior to landing after encountering issues when re-starting its Raptor motors.

Just before launch, Starship SN15 on the launch stand, venting excess vapours. The structure to the left is a test rig that is being used to simulate the dynamic stresses the forward section of an unladen Starship will face during atmospheric entry. Credit: SpaceX

SN15, however, is a substantially different vehicle to those. As the first of the “next generation” prototypes, it includes multiple updates and improvements throughout – including flying with the very latest iteration of the Raptor motors. Proof of this came in the run-up to the flight, when SN15 completing all its pre-flight tests without a significant issue – unlike the earlier models.

The vehicle lifted-off at 23:24 UTC, rapidly vanishing into low-altitude cloud as it climbed to the expected altitude of 10 kilometres, where it flipped into a horizontal skydiving descent. Just over 6 minutes after lift-off, the roar of the three Raptor engines re-starting reverberated through the clouds before the vehicle re-appeared in a tail-fist descent on  two of the three engines to complete a successful landing.

Starship SN15 on the landing pad, post-flight. The fire around the engine skirt is visible, and the fire suppression system can be seen dousing the area in water. Credit: SpaceX

Following landing, a small fire was visible at the base of the vehicle – the result of excess methane venting, and an issue SpaceX will need to address. However, it was clear that SN15 was safely down on the ground and “safing” procedures could commence.

Despite the atmospheric conditions, the team at NASAspaceflight.com team (this is not an official NASA group) had a number of video cameras placed around the SpaceX facilities at Boca Chica, Texas, and following the flight, they edited the footage from those cameras together to show the lift-off and landing sequences from different angles, some with the audio delay created by the distance of the camera from the launch stand edited out.

Some of these clips bring home the raw power of the Raptor engines – seconds after ignition, the shockwave of sound from the three engines on the Starship starts the camera vibrating – a small demonstration of what is to come when a Super Heavy / Starship combination lifts-off with no fewer than 28 of these engines firing simultaneously.

Following the flight, some pundits were forecasting SN15 could be set to make a second flight, possibly in short order – an idea fuelled be Elon Musk. This seems unlikely, as SpaceX will doubtless want to carefully examine the vehicle to learn all that they can from it prior to attempting to fly it a second time – if, indeed, they do.

All six of SN15’s landing legs suffered severe damage, as shown in this image, possibly the result of lateral loads placed on the vehicle on landing. Credit: SpaceX

As it is, the the landing legs – and possibly the base of the vehicle as well – suffered considerable damage during the “nominal” landing, as the image to the right shows.

Thought to be the result of lateral loading – the vehicle may have skidded sideways on touch-down – the damage is further evidence that SpaceX needs to seriously re-think how landing legs are mounted and deployed.

This is something the company his indicated it would be doing – and images of the proposed Starship Human Landing System (HLS) points to the direction in which they may move – although Musk has also floated the idea of eventually discarding any landing legs, and “catching” returning Starships via a launch tower, a-la his idea for Super Heavy – an idea that will presumably only apply to those Starships intended to operate no further than Earth orbit.

The next vehicle in the fleet that is likely to fly will be SN16, The legs on SN15 are the same as those on the earlier SN8-SN11 vehicles, and they are slated to be replaced by a more robust system,  and the degree of damage they suffered either as a result of a heavier touch-down or a possible lateral load being placed on the legs as a result of the vehicle “sliding” as it touched down. Either way, this damage along means that SN15 is unlikely to re-fly soon (although that doesn’t mean it won’t re-fly at some point).

As it stands, SN16 is now fully stacked and ready for transfer to a launch stand in order to have its Raptor engines fitted in preparation for a flight – this transfer could take place as soon as the coming week.

It is unclear how many more Starship launches will occur in the short-term: SpaceX is attempting to carry out an orbital launch of a Super Heavy Booster and an unladen Starship in July. Given the state of preparations – the company has yet to produce a fully flight-ready Super Heavy (Booster Number 1 has been scrapped, and work appears to have ceased on BN2 and BN2.1, leaving only BN3 under assembly at the moment), plus the orbital launch facilities are still under construction. Thus, unless attention and resources are significantly further shifted to booster development and testing, that July date seems to be highly ambitious.

Ingenuity Says ‘Farewell’ to “Wright Brothers Field”

On  Friday, May 7th, 2021, the Mars helicopter drone Ingenuity completed its 5th of five pre-planned test flights. In doing so, the little 1.8 Kg helicopter both set a new record and commenced a new phase in its mission.

During this flight, Ingenuity initially rose to the “usual” altitude of 5 metres, then said “farewell” to its operational based of “Wright Brother’s Field”, and headed south for a distance of  129 metres before coming to a hover. It this ascended further – climbing to 10 metres to take high-resolution of the area around itself, before descending to a landing in a flight lasting a total of 108 seconds.

The new landing site was selected on the strength of images gathered during the 4th flight for Ingenuity. It lies fairly close to the path the Mars 2020 Perseverance rover will follow as it now commences its science operations in earnest. The initial plans for the rover do not require it to make long-haul drives, but rather investigate the area to the south of the mission’s landing site, and this will allow the Ingenuity team to carry out further flights that can both further test their vehicle and allow them to potentially assist the rover team by scouting possible places of interest for the rover to explore.

Overall, Ingenuity is in fair better shape than had been expected at this point in its flight regime: the solar collectors are working optimally, the battery system is providing more than enough energy to both power the little vehicle and to keep it warm during the harsh Martian nights.

The plan forward is to fly Ingenuity in a manner that does not reduce the pace of Perseverance science operations. We may get a couple more flights in over the next few weeks, and then the agency will evaluate how we’re doing. We have already been able to gather all the flight performance data that we originally came here to collect. Now, this new operations demo gives us an opportunity to further expand our knowledge of flying machines on other planets.

– Bob Balaram, Ingenuity Chief Engineer, NASA/JPL

Prior to the 5th flight, NASA issued an audio recording captured by Perseverance of Ingenuity’s 4th flight – something the mission teams had been hoping to do.

The recording is a fascinating demonstration of the difference in how sound travels on Mars compared to Earth. Given the speed the rotors on Ingenuity spin (2400 rpm), one might expect the helicopter to generate the same high-pitched whine common to radio control helicopters on Earth. However, as the recording reveals, the less-dense atmosphere of Mars reduces the motor sounds from Ingenuity to a low-pitched hum. When listening, also note the doppler shift created by the drone’s motion away from, and back towards, the rover.

Continue reading “Space Sunday: starships, helicopters and rockets”

Space Sunday: a helicopter, a space station and a big ‘plane

April 25th (mission Sol 64), Ingenuity’s sideways looking colour camera just manages to image NASA’s Perseverance rover as it observes the helicopter’s 3rd flight from a distance of 85 metres from Ingenuity. The black disc in the lower left is one of the helicopter’s landing feet. Credit: NASA/JPL

NASA’s Ingenuity helicopter drone has now complete four of its five initial flights on Mars, and in doing so, NASA has announced the programme has moved from demonstration flights to an extended “operational” flight regime covering at least a further 30 days. In particular, Ingenuity will be used to test how future aerial drones might be used in support of ground-based operations, with Ingenuity working in partnership with Perseverance, the Mars 2020 rover, as the latter commences the operational phase of its own science mission.

For Ingenuity to now enter a new operational demonstration phase, our team has been extremely happy and proud. It’s like Ingenuity is graduating from the test demo phase to, now, the new demo phase, where we can show how rotorcraft can be used.

– MiMi Aung, Ingenuity Project Manager

During its third flight, which occurred on Sunday, April 25th (mission Sol 64) Ingenuity flew a total of 100 metres, again at an altitude of around 5 metres, lifting-of from “Wright Brothers Field” to travel 50 metres downrange before hovering briefly and then returning to “Wright Brothers Field” and making a safe landing.

Along the way, the helicopter achieved another first – capturing a shot of Perseverance from the air. When enlarged, the image of the rover was slightly grainy, but the helicopter was moving at speed and was some 85 metres from Perseverance, with the colour camera set to periodically take photos – given the Earth-Mars distance, it simply isn’t possible to aim the camera in real time during a flight.

A series of still images from the downward-facing camera on Ingenuity strung together to produce an animation of the helicopter’s shadow passing over the surface of Mars. NASA/JPL

The helicopter’s 4th flight had been planned for Thursday 29th at 14;12 UTC, but was cancelled when Ingenuity has a further timing issue of the kind that caused a postponement of its pre-flight checks in early April. Whilst adjustments were made to the helicopter’s software to correct the issue, the engineering team noted that there was potential for it to again occur.

However the fact that the issue had been encountered meant the team were prepared for the problem, and 24 hours later, Ingenuity lifted-off to cover a total distance of 266 metres – 133 downrange and 133 back to “Wright Brothers Field”, flying for a total of 117 seconds, – well in excess of the planned maximum flight time of 90 seconds, and reaching a horizontal speed of 13 km/h.

Images from the flight were still being received and processed at the time of writing this article, but it is hoped that Ingenuity may have again caught Perseverance in one the five 13 megapixel shots taken with its sideways-looking colour camera. It  is also hoped that the microphones aboard the rover, which were turned on during the flight, may have caught the sounds of Ingenuity flying.

The Mastcam Z system on NASA’s Perseverance rover captures an image of Ingenuity flying downrange from during its 4th flight on April 30th, 2021. NASA/JPL

The decision to extend Ingenuity’s mission beyond the initial 30 days came as something of surprise: prior to the 4th flight being delayed, NASA were still talking in terms of the flight regime ending after the initial 30 days.

However, a re-evaluation of Perseverance’s science programme brought about a change of heart.  The initial flight extension is for a further 30 days, with further extensions possible if the helicopter can continue to operate in partnership with the rover, rather than the latter being a passive observer. Theoretically, there are no limits to how long Ingenuity might operate: it has no limiting consumables, and the only real threats to its operation being a crash, a mechanical issue or a failure resulting from the thermal stresses imparted by the day / night temperatures extremes.

China launches First Space Station Element

At  03:23 GMT on April 29th, a heavy-lift Long March 5B booster lifted-off from China’s Wenchang Spacecraft Launch Site on the island of Hainan, carrying the core module of the nation’s long-awaited permanent space station into orbit.

The Long March 5B used to launch the Tianhe-1 core module of the Chinese space station rolls out to the launch pad at the Wenchang Spacecraft Launch Site on Hainan Island, April 23rd, 2021, ahead of its April 29th launch. Credit: STR/China News Service
The 22.6 tonne Tianhe-1 (“Harmony of the Heavens”), also known as the Crew Cabin Module, is a 3-section unit designed to provide living quarters for a planned crew of 3 tiakonauts (as Chinese astronauts are called), with the associated life support systems, a power, propulsion facility that will provide power, life support, control and guidance for the entire station, and a docking hub.

Overall, the Tiangong space station is expected to comprise Tianhe-1 and two additional modules, Wentian and  Mengtian. The latter will provide a mix of research and science capabilities, together with further navigation avionics, propulsion and orientation control systems. Once launched, they will bring the station to around 60 tonnes in mass, with the option of additional capabilities being provided by Tianzhou resupply vehicles.

An artist’s illustration of China’s space station in Earth orbit. The core Tianhe-1 module extends from the centre to lower right, with a Tianzhou automated cargo / resupply vehicle docked at the aft airlock. Upper left shows a Shenzhou crew vehicle docked at the forward docking hub airlock. lower left and upper right are the two science modules with their solar arrays extended. Credit: Adrian Mann/All About Space magazine/Future Plc

Tiangong builds on the experience China gained in operating two (relatively short-lived) orbital laboratories, Tiangong-1 and Tiangong-2.  Despite its small size when compared to the 460-tonne International Space Station, the Chinese station will have a powerful research capability: fourteen internal experiment racks and more than 50 external docking points for instruments designed to gather data in the space environment, with 100 experiments already earmarked for flight on the station.

The two additional modules will not be launched until 2022. Before then, Tianhe will be visited by a automated Tianzhou resupply vehicle in May 2021. This will be followed in in June 2021 by the first crewed flight to the station. Tianzhou and crewed missions will then continue alternately in September / October 2021 and April / May 2022, before the science modules are launched for automated rendezvous with Tianhe-1 in May or June 2021 and August or September 2022.

Among its duties, the station will help China prepare for its planned crewed missions to the Moon and also co-operate a Hubble-class space telescope China plans to launch in 2024. This will occupy an orbit in a similar inclination to the station, allowing it to be serviced by crews operating from the station.

In  the meantime, the booster used to launch Tianhe-1 has caused consternation as China has effectively abandoned the 30 metre long core in low Earth orbit, and it is expected to make an uncontrolled re-entry into Earth’s denser atmosphere some time in the next week. This is a cause for concern as the booster’s orbit carries it over population centres such as New York, Madrid, Beijing and Wellington, New Zealand, and there are elements such as the motors that could survive entry into the atmosphere and strike the ground.

This is not the first time China has taken a cavalier attitude towards large mass orbital debris coming back to Earth: both the Tiangong 1 and Tiangong 2 orbital laboratories were left to make uncontrolled re-entries into the atmosphere, risking potential ground impacts.

Continue reading “Space Sunday: a helicopter, a space station and a big ‘plane”

Space Sunday: flights and MOXIE on Mars, ISS news

A comparison of the altitudes reached by Ingenuity during its first and second flights. Via NASA / JPL / iGadgetPro

Ingenuity, the small drone helicopter that forms part of the Mars 2020 mission, completed its 2nd successful flight on Mars on Thursday, April 22nd, 2021 (mission Sol 61), just days after become the first powered vehicle from Earth to lift-off and fly on another planet (see: ). And in keeping with the promise from the flight and engineering team, the second sortie was a  little more ambitious than the first.

Lifting-off at 09:33 UTC, the helicopter rose to an altitude of 5 metres before hovering and then transitioning into a controlled sideways flight covering a distance of around 2 metres before again coming to a halt. It then hovered in place, rotating itself to point its on-board colour camera in several different directions before transitioning back into horizontal flight to hover over its landing site and then descend to a safe landing.

In all, the light lasted 52 seconds, and was watched by the Mars 2020 Perseverance rover, parked some 64 metres away on “Van Zyl Overlook”. During the flight, Ingenuity used  its black-and-white camera to image the ground beneath it. Also – in another first – the helicopter took the first image of the surface of Mars captured by an operating aerial vehicle in controlled flight. The image clearly shows the tracks left by Perseverance as it manoeuvred around “Wright Brothers Field”, the location where Ingenuity is being tested.

An image from Ingenuity captured on April 22nd showing tracks left by Perseverance, note the helicopter’s shadow at the bottom of the image, and the landing feet visible top left and top right. Credit: NASA/JPL

While not overly dramatic in terms of manoeuvrings, the second flight paved the way for the third of five flights, which took place in the early hours on Sunday, April 25th, commencing at 05:31 UTC.

In this flight – for which data was still being received as this article was being prepared – Ingenuity rose to a height of 5.2 metres, hovered, and then flew a distance of some 50 metres downrange at a maximum speed of 2 metres / second (7.2 km/h). Following a further hover, the helicopter than returned uprange to again land at “Wright Brothers Field”. As with the 2nd flight, Ingenuity was able to use both its black-and-white and colour cameras, which have been received by NASA JPL and published.

Today’s flight was what we planned for, and yet it was nothing short of amazing. With this flight, we are demonstrating critical capabilities that will enable the addition of an aerial dimension to future Mars missions.

– Dave Lavery NASA program executive for Ingenuity, Washington DC

A further image captured by Ingenuity, this time during its April 25th 50-metre downrange flight. Credit: NASA/JPL

The April 25thflight was the longest yet, lasting 80 seconds. It now in turn paves the way for the last two in the pre-planned sequence of five initial flights in the coming days, and potentially opens the door for flights beyond those, if both are successful.

The video below compares Ingenuity’s first and second flights using animations of frames captured by the Mastcam-Z system on Perseverance. Note that the “side-to-side blinking” at the end of the video is a repeated showing of images captured by the left and right cameras of the Mastcam-Z system (which can also be used to produce stereoscopic images).

Perseverance also made history on April 22nd, by turning a sample of the Martian atmosphere into oxygen. Using the Mars Oxygen In-Situ Resource Utilisation Experiment ( MOXIE), a unit roughly the size of a car battery, the rover produced an initial 5 grams of  oxygen – the equivalent to about 10 minutes of breathable oxygen for an astronaut carrying out normal activity, as explained in the video below.

Five grams is an impressive, but small amount;  however, when running at full output, the MOXIE test-bed should produce around 10 grams per hour. More particularly, when scaled-up to a one tonne unit, MOXIE could produce 25 tonnes of usable oxygen over the course of several months.  That’s enough to help fuel a vehicle from the surface of Mars and back into orbit.

And this is why MOXIE is important. A major part of the mass required for a human mission to Mars is the oxygen and fuel feed stock the crew will need both to survive some 500 days on Mars and to power the vehicle that must lift them back up to orbit (and / directly back to Earth). That adds up to a lot of payload mass that has to be carried to, and landed on, Mars. So, if a good proportion of that mass could be removed from the equation, then human missions to Mars become a lot less payload intensive.

This idea was first put forward in the late 1990s by Drs. Robert Zubrin and David Baker as a part of the Mars Direct mission concept. In that idea, they postulated not only producing oxygen using the Martian atmosphere, but also methane fuel. Their idea meant that potentially, 112 tonnes of fuel and oxygen could be produced on Mars ahead of each crewed mission – enough to fuel their return vehicle to Earth and provide a reserve for use during their stay on Mars, all for the cost of lifting around 6 tonnes of hydrogen to Mars.

The Mars Direct proposal used hydrogen as as a feed stock to produce both oxygen and methane that could be used to fuel the Earth Return Vehicle a crew would use travel back to Earth. Credit: Zubrin & Baker / Pey

NASA’s goal is more modest, with the focus currently only on oxygen production; fuel such as liquid methane would still have to carried to Mars from Earth and suitably stored – although there is no reason why a broader use of ISRU – In-Situ Resource Utilisation, as the process is called – to produce oxygen and fuel could not be tested in the future. On Earth, using a NASA research grant, Zubrin proved the basic concept he and Baker developed (which in turn uses 19th century chemistry) actually works, producing oxygen, methane and water using just carbon dioxide and hydrogen.

China Names Their Rover

Mid-May should see China place its first lander / rover combination on the surface on Mars. A part of the Tianwen-1 mission that arrived in Mars orbit ahead of NASA’s Mars 2020 mission, the rover has up until recently remained unnamed.

However, on Saturday, April 24th, the China National Space Administration (CNSA) announced the rover will now be called Zhurong after the god of fire and of the south, and an important personage in Chinese mythology and Chinese folk religion (also known as Chongli).

An artist’s impression of Chinese Zhurong rover on Mars. Credit: CNSA

The name was selected following a national competition of the kind NASA has used for the naming of its Mars rovers. It was seen by CNSA as being particularly apt as the Chinese name for Mars is Huoxing, or “fire star” – so it’s the god of fire on the fire star.

Roughly the size of NASA’s Wars Exploration Rovers Opportunity and Spirit, although slightly heavier, Zhurong carries panoramic and multispectral cameras, instruments to analyse the composition of rocks and ground-penetrating radar to also investigate subsurface characteristics. It  will most likely set down on Utopia Planitia, a Martian plain where NASA’s Viking 2 lander touched down in 1976.

Continue reading “Space Sunday: flights and MOXIE on Mars, ISS news”

Mars Monday: Ingenuity flies

Ingenuity hovers 3m above the surface of Jezero Crater, Mars, watched by the Mars 2020 rover Perseverance. Credit: NASA/JPL

April 19th saw aviation and space flight history made 288 million kilometres from Earth, when a tiny drone-like craft weighing just 1.8 kg spun-up two contra-rotating rotor blades, each 1.2 metres in diameter, to 2,500 rpm and then rose into the tenuous atmosphere of Mars to a height of 3 metres, hovered rotated about its vertical axis, then descended to land on the Martian surface once more.

Ingenuity, a proof-of-concept system to test the feasibility of controlled, powered flight on Mars, is a remarkable little vehicle that holds great promise for the future of the exploration of that world. While this initial flight was short – under a minute in total length from spinning-up its rotors to touch-down, it opens the door to more extensive flights over the coming days that will see the vehicle complete more complex manoeuvres. In doing so, it will provide vital information on the behaviour of rotary vehicles on Mars, vehicles that could in the future provide enormous additional potential and capabilities to future robotic missions on Mars and eventually support human missions.

The flight occurred at 07:31 UTC on Monday, April 19th, with telemetry being recorded by the helicopter’s own systems and relayed to the Mars 2020 Perseverance rover, which also recorded the event using its Mastcam-Z camera system and its navigation cameras. The initial data from the flight was then transmitted to Earth some three hours later, with additional images and video being transmitted throughout the day.

The first indication of the success of the flight came not through any pictures but via a simple graphic track of altimeter readings made by Ingenuity. Mostly flat to show the vehicle was sitting on the ground, the track was marked by a sudden “bump” recording the vehicle rise to just over 3 metres, its hover, and then its descent. It was enough to get the helicopter’s flight team – a handful at JPL practising social distancing in a large room, the rest working from home – rejoicing. But the chart was just the opening treat.

The altimeter data track from Ingenuity was the first solid indication that Ingenuity had successfully flown. Credit: NASA/JPL

Following the initial receipt of data, still images in low-resolution captured by Perseverance’s navigation cameras clearly showed the helicopter “jumping” between to close-together points, indicating that during the period between the images, it had flown and landed. However the biggest treat came later in the day with a stream of frames captured by the Mastcam-Z system on the rover.  When strung together, these produced a video of the flight.

Ingenuity is a project more than six years in the making, and has uniquely involved not only multiple NASA space and science centres, but also their aviation research and development centres as well. It was actually a late addition to the Mars 2020 mission, requiring some extensive changes to the rover that had to be made in order to mount the helicopter beneath the rover’s belly, and include a mechanism for deploying Ingenuity onto the surface of Mars.

Ahead of the Mars 2020 launch, Ingenuity want through extensive testing to simulate flight conditions on Mars. This involved placing the vehicle a large vacuum chamber filled with carbon dioxide to a pressure to match the surface atmospheric pressure on Mars – which is the equivalent of Earth’s at an altitude of 30 km. To simulate the low Martian gravity (38% that of Earth’s), a special rig was attached to the demonstrator to counter 62% of its mass. Finally, a wall of 900 computer fans was used to simulate typical surface wind speeds on the surface of Mars, as recorded by the Mars Science Laboratory rover Curiosity.

 All of this allowed engineers to define the optimal size of the helicopter’s rotors, balancing them against Ingenuity’s mass and size and to determine things like their required rate of spin to achieve flight – between 2,400 and 2,500 rpm  – five times the speed of Earth-based helicopter rotors.

A low-resolution image taken by Ingenuity’s downward point camera showing the helicopter’s shadow on the surface of Mars as it hovers at a height of 3m. Credit: NASA/JPL

Even so, flying an engineering test model in a controlled environment is very different to doing the same on Mars – hence a lot was riding on this first flight.

Ahead of it, the area selected for the test flight sequence and previously dubbed “the airfield” was unofficially renamed “Wright Brothers Field”. Having safely dropped off the helicopter there in early April, Perseverance had driven some 70 metres from Ingenuity at a rise overlooking the area that NASA has dubbed “Van Zyl Overlook” in honour of key Ingenuity team member Jakob van Zyl, who passed away unexpectedly in August 2020. From this vantage point it is hoped that the rover will be able to record all of Ingenuity’s flights.

Captured by Ingenuity’s downward-pointing camera, this image shows Ingenuity’s shadow on the surface of Mars just before it lands. Two of the vehicle’s legs can be seen top left and top right, while the 2,500 rpm spin of the contra-rotating blades used to provide lift makes them appear semi-transparent. Credit: NASA/JPL

Prior to the flight, and as noted in my previous Space Sunday update, the flight team had to make some changes to the software overseeing Ingenuity’s first flight. Not only have these adjustments worked well, it is hoped that they will remove any need for running a complete software re-installation on the vehicle – a process that could take several days to complete and severely impact the ability to complete all of the remaining four planned test flights. However, the option of a full re-installation is being kept open should further issues arise with the timing and control processes.

Inn the meantime, it’s going to be a few days before all of the data from the first flight has been analysed. As such, the next flight for Ingenuity has yet to be scheduled.

When it does goes ahead, it should see the helicopter rise to an altitude of around 5 metres, then translate into horizontal flight for a distance of some 50 metres before coming to a stop, then returning once more to land.

As it is, the initial telemetry from Ingenuity shows it is a good health – better, in fact than before it lifted off. This is because the flight removed dust that had been accumulating on the solar cells located above the vehicle’s rotors, interfering with their efficiency.

In all the Mars Helicopter project has three goals:

  • Show via Earth-based testing that it should be possible for a heavier-than-air vehicle  to take flight on Mars – achieve via the vacuum tests described above.
  • Achieve stable flight on Mars – now achieved through this first flight.
  • Obtain data that can inform engineers as to the design and capabilities required by future aerial vehicles that could be deployed to Mars – and also elsewhere in the solar system, such as Saturn’s moon Titan.
Following the flight, the ICAO has officially designated Ingenuity the first of aircraft type IGY, and gave its testing area on Mars the airport code JZRO. image credit: NASA

Continue reading “Mars Monday: Ingenuity flies”

Space Sunday: Ingenuity readies for flight

Ingenuity hangs under the belly of Perseverance at the end of several days of initial deployment.Credit: NASA/JPL

This past week has seen the Mars helicopter Ingenuity successfully deployed onto the surface of Mars in readiness for its first flight – although NASA has announced the flight itself has been delayed.

As I noted in my previous Space Sunday report, the helicopter was unpacked over several days (the work actually commencing prior to that report appearing). It took several days because each stage of the deployment had to be verified to ensure it had been correctly completed using the WATSON camera on  the rover’s robot arm imaging the helicopter from several angles after each phase of the deployment so that engineers on Earth could confirm everything looked correct. However, everything went as expected, and by March 31st (UTC), Ingenuity was in an upright position under the rover, but still connected to it via the power umbilical and backplane support.

At this point proceedings were paused whilst systems were given a final check-out prior to the command being given to release the helicopter to drop the 10-13cm down onto the Martian surface. Once released, Ingenuity would be on its own power-wise, with a limited period in which to charge up its batteries using sunlight, so the engineering team wanted to run through final verification that everything was OK.

On Sunday, April 4th, the Jet Propulsion released images revealing that final step of deployment had been completed, and Ingenuity is standing on Mars, Perseverance having moved several metres away to establish line-of-sight communications with the helicopter.

Caught by the Hazcam system on Perseverance, Ingenuity sits on the surface of Mars after the rover had initially moved away from it following release. This image was taken on mission Sol 43 (Sunday, April 4th, 2021) at a local mean solar time of 15:14. It is a raw image that has not been white balanced for Earth lighting. Credit: NASA/JPL

The next challenge is to ensure the solar cells that the very top of the rotor mast are able to provide energy to the batteries, which can only survive 25 hours without recharge now Ingenuity has been separated from the rover.

It had been hoped that the first in a sequence of five planned flight tests would commence on Thursday, April 8th. However, this has now been delayed until Sunday, April 11th, at the earliest.

A further view of Ingenuity sitting in Jezero Crater after the rover has moved further away. Sol 43 (April 4th, 2021)

The delay is to allow for a full regime of tests to be carried out on the helicopter – which has gained the nickname “Ginny”  among the engineering and flight team at JPL – including its ability to survive the harsh cold of Martian nights and then recharge its batteries during daylight hours. Should all go according to plan, Perseverance will capture the flight, and images / video from both the rover and the helicopter will be released on or shortly after April 12th.

Providing the first straight-up-hover-straight-down flight is a success, the flight team will move on to the remaining four pre-flights for the helicopter, which the hope to complete well inside the 30-day window allowed for the tests – and potentially complete more, if there is sufficient time left before Perseverance must turn to its now duties and say “bye-bye” to  Ingenuity.

Following the first flight, Ingenuity will perform a more complex series of flights, such as the one shown above. Credit: NASA/JPL

When it does commence its own science work, Perseverance may not initially travel too far from the helicopter’s flight zone: whilst Ingenuity was unfolding beneath it, the rover’s team became increasingly intrigued by a green-tinted rock a short distance away.

The yet-to-be-dubbed rock is thought to be a possible meteorite or a piece of bedrock that may have been “popped” up from under the layers of sedimentary rock on which the rover is parked. However, the science team will not be drawn on any conclusions until Perseverance has had the chance to get up close to the rock and focus all of its attention on it. Thus far, the rover has only been able to image the rock using its Mastcam-Z system and zap it a few times with the SuperCam laser system.

That the rock – roughly 15 cm in length – might be a meteorite is not beyond the bounds of possibility: Perseverance’s “sister” rover, Curiosity, happened upon a similar odd rock sitting on the landscape in 2014. Once its duties watching over Ingenuity have ended, Perseverance will be able to devote its full attention on the rock, further utilising its SuperCam laser and spectrometer, as well as the SHERLOC and WATSON combination on its robot arm in an attempt to decipher the rock’s mystery.

The interesting rock – possibly a meteorite – Perseverance has been studying from a distance whilst the Ingenuity helicopter deployment has been underway. Credit: NASA/JPL

Meanwhile, and half a world away, Curiosity has been busy as it continues its investigations of  “Mount Sharp”, the 6 km high mound of deposits left in the centre of Gale Crater, the result of multiple periods of flooding.

At the start of March, Curiosity commenced it most recent science campaign, examining an impressive 6 metre high rock formation dubbed “Mont Mercou” after a mountain in France close the village of Nontron, which is being used to generate monikers for features in the area the rover is exploring due to the presence of nontronite, a type of clay mineral (also named for the village) within the area.

A 3D view of “Mont Mercou” created from a total of 32 images captured by Curiosity on Sol 3049 of its mission – March 4th, 2021. It was made by taking 16 images from one location and then moving 4 metres to take a second set. The resulting stereoscopic effect helps scientists get a better idea of the geometry of the mound’s sedimentary layers, as if they’re standing in front of the formation. This finished view has been coloured balanced to match Earth-type lighting conditions. Credit; NASA/JPL

Continue reading “Space Sunday: Ingenuity readies for flight”

Space Sunday: more from Mars and recalling a NASA legend

A CGI model of the Mars 2020 rover Perseverance on the surface of Mars. Credit; NASA

NASA’s Mars 2020 Perseverance rover has passed its first month on Mars, an event marked by the science and engineering teams continuing to check out the rover’s systems  and instruments as the rover continues its initial drive within Jezero Crater.

So far, all of this has been going exceedingly well. We’ve had no major technical issues. We’ve had no major technical issues.

– Ken Farley, Perseverance project scientist

Currently, the mission team are preparing to deploy the Ingenuity drone helicopter ahead of for a series of proof-of-concept flights. This has involved driving the rover short distances to locate a suitable area in which to deployed the helicopter, which is stored under the rover.

So a location was found during the past week, and on Sunday, March 21st, Sol 30 for the rover on Mars, the command was sent to eject the cover that projected the delicate helicopter during the rover’s arrival on Mars. The release of the cover was filmed by the WATSON imager on the rover’s robot arm, with raw colour and black and white images issued by NASA a few hours after the cover had been dropped.

Two images of captured by the WATSON imager on the Mars 2020 rover robot arm show fore-and-after views, one in black-and-white and the other in colour, of the detached protective cover for the Ingenuity helicopter droner. The helicopter can be seen stowed and attached to the rover’s belly at the top of each image. Credit: NASA/JPL

The next stage will be for the rover to move clear of the cover so the helicopter itself can be deployed, before the rover backs away even further to expose the drone to clear air. It’s not clear when this deployment will take place, but NASA will be holding a special briefing on Tuesday, March 23rd at 17:30 UTC at which members of the helicopter and rover team will discuss progress with the mission and what will be involved in the helicopter deployed and flight operations  commence. The briefing will by available on NASA TV and YouTube, with questions being accepted via social media using #MarsHelicopter.

The first flight won’t be made any earlier than the first week of April, but it will be filmed by the rover using its high-resolution Mastcam-Z systems, and an attempt will be made to record the sound of the drone flying. In all, five flights of the helicopter are anticipated, after which Perseverance will commence its own science mission.

As things stand, this will be a two-phase mission, the first being an exploration of the inflow delta created by the water that once flowed into the crater to form a lake. In particular, the rover will be looking for evidence of past life in the sediments and rocks. Along the way, it sell select a spot to deposit up to 10 samples it has gathered during its studies, which my be collected by a future sample-return mission.

The second phase will see Perseverance may its way out of the crater to examine the crater rim and the plains beyond. Here again, it will select a location to deposit up to 28 samples that may be gathered by a future sample-return mission.In all, both phases of the mission – which will be subject to change depending on discoveries made along the way – are expected to take around 7 years to complete and will see the rover cover some 35 km.

In the meantime, the rover’s microphones have been busy; as I reported in  my last Space Sunday, one has recorded the sound of the Martian wind. More recently, NASA has released a recording on the rover’s EDL (Entry, Descent. Landing) microphone capture of sounds of the rover driving on Mars.

Those expecting some high-tech sound of purring electrical motors and so on as depicted in sci-fi films are liable to be disappointed by the strange mix of bangs,clunks and thuds recorded as the rover’s aluminium wheels and its spring suspension deal with the uneven terrain. Two recordings were released, one at 16 minutes in length, and a 90-second “cleaned up” recording, that is embedded below.

If I heard these sounds driving my car, I’d pull over and call for a tow. But if you take a minute to consider what you’re hearing and where it was recorded, it makes perfect sense.

– Dave Gruel, lead engineer for Mars 2020’s EDL Camera and Microphone subsystem.

One of the reasons the sounds seem to be odd is because the EDL microphone isn’t designed to record the the sound of the mobility system directly, rather it is picking the sounds up through the body of the rover.

Glynn Lunney

Glynn Stephen Lunney may not be a name familiar to many interested in human space flight, but he was one of the legends of NASA, and who sadly passed away at the age of 84 on March 19th, 2021.

Born in November 1936 in the coal city of Old Forge, Pennsylvania, Lunney was encouraged by his parents to seek a career away from the mines. An early interest in flight and model aeroplanes led him to engineering in college, form where he enrolled at the Lewis Research Centre in Cleveland, Ohio, to study aerospace engineering, the centre at that time forming part of the US  National Advisory Committee for Aeronautics.

Graduating in 1958 with a Bachelor of Science degree, Lunney remained with the NACA as a researcher in aerospace dynamics at Lewis. He was thus one of NASA’s very first employees when on July 29th, 1958 President Eisenhower signed it into existence, subsuming the NACA into it in the process.

Lunney’s prowess in the fledgling field of space flight was immediately recognised, and he was transferred to Langley Research Centre, Virginia, where in September 1959, and aged just 21, he became the youngest member of the Space Task Group, the body given responsibility for the creation of NASA’s human space flight programme.

Glynn Lunney “in the trenches” (as the rows of consoles at mission control were called at the time) of the mission simulation centre, 1966. Credit: NASA
As a member of the Flight Operations Division, Lunney was one of the engineers responsible for planning and creating procedures for Project Mercury, America’s first manned space programme. Here he was a major part of the team that wrote the first set of mission rules by which both flight controllers and astronauts operated, and he also became the second man to serve as the Flight Dynamics Officer (FIDO), responsible for controlling the trajectory of the Mercury spacecraft and planning adjustments to it.

Such was Lunney’s quiet assurance, professionalism and engineering skill, he was one of three men selected by Christopher C. Kraft, the hands-on head of mission operations, to join him in becoming the first generation of Flight Directors responsible for managing all of NASA’s space flights, the other two being John Hodge and the legendary Gene Kranz. Together, these for men did much to establish the protocol  and procedures required for human space flight at that time, and they also oversaw the design and implementation of the first two Mission Operations Control Rooms which were to become famous as “mission control” in the Apollo era.

Lunney (seated, foreground) walking his team through the process of transferring guidance and navigation data from the Apollo 13 command module to the lunar module,  1970. Credit: NASA

Although only 29 when selected by Kraft, Lunney was, in addition to his responsibilities as a Flight Director, charged with overseeing the testing of core elements of Apollo flight hardware, including the launch escape system, and the first uncrewed flight test of the the Saturn V launch vehicle.

Lunney was particularly respected for his ability to absorb and retain information, running through scenarios and options much faster than any of his colleagues. This was especially important in the wake of the Apollo 13 explosion in  1970, with the vehicle en-route to the Moon.

While Genz Kranz and his White flight team tend to get all of the credit for successfully guiding the astronauts through the crisis and getting them back to Earth, it was actually Lunney who orchestrated the entire process of powering-up the lunar module, transferring the flight guidance and navigation data to its computer and  getting the Apollo 13 crew and critical equipment into the module within a very short time frame, whilst also leaving the command module in a condition whereby it could hopefully be powered up later. In doing so, he largely steered his team by using his own innate knowledge of systems aboard both craft.

Continue reading “Space Sunday: more from Mars and recalling a NASA legend”