Space Sunday: minerals on Mars, space politics and more Dream Chaser

As I looked at the Mars 2020 mission in my previous Space Sunday piece (see: Space Sunday: A year on Mars and the Polaris Programme), I thought it time to catch up on some of the most recent news about NASA’s other “big rover” working on Mars, Perseverance’s “older sister”, Curiosity, the rover of the Mars Science Laboratory (MSL) mission, which will mark its tenth anniversary on Mars later in 2022.

Curiosity’s mission to Gale Crater, almost half a world away from Perseverance continued onwards despite the dearth of regular updates posted to the official blog (but them, updates on Perseverance have been far less voluminous than see during the first year of MSL operations on Mars, largely thanks to NASA opting to make greater use of social media tools like Twitter to hand out bite-size nibbles of updates.

However, one recent discovery that got some hearts all a-flutter recently was that of a curious formation Curiosity imaged on flank of “Mount Sharp”, the huge mound rising from the middle of the crater – and officially called Aeolis Mons. At first glance, it appears to show a petrified flower sprouting from the surface of the planet – and while it is most certainly not any such thing or even the first of these formation Curiosity had encountered – the raw images captured by Curiosity were released sans any indication of scale, getting some website and individuals a little over-excited.

The “raw” image of the “flower-like” object captured by the Curiosity rover on February 25th, 2022 (mission Sol 3397 by the Mars Hand Lens Imager (MAHLI) instrument mounted on the rover’s robot arm. Credit: NASA/JPL

The object is in fact a mineral structure called a diagenetic crystal cluster. Essentially they are a collection of crystals formed by mineral precipitating from water, undergoing diagenetic recombination in the process, creating this beautiful, but tiny three-dimensional structures.

In fact, the rover first encountered structures like this since around Sol 870 of the mission, as it explored the Pahrump Hills at the base of “Mount Sharp”. However, this particular structure is somewhat different, as the structures found at Pahrump were formed by sulphate (salt) crystals, leached out of receding waters as the lakes that once repeatedly filled Gale Crater finally vanished. This structure formed from salts and other minerals, and most likely formed inside a small rock over which water coming off the slopes of “Mount Sharp” once flowed, before it was left to the mercy of the Martian wind, which slowly eroded it over the aeons until only this delicate-looking but tough structure remained.

The same image of the structure, this to overlaid with a to-scale US Lincoln penny (one of which also adorns Curiosity’s bodywork), provided by mission scientist Abigail Fraeman to give an impression of the object’s actual size. Credit: NASA/JPL / A. Faeman

The other interesting point with the image is the manner in which it was created. For most its mission, Curiosity has captured images of objects and structures, stored them, and then transmitted them to Earth for post-processing. Here, however, MAHLI took around eight images of the object all from very slightly different angles. The images were then processed by the rover itself, using a software package referred to as the onboard focusing process, which allowed them to be combined and adjusted to produce a single frame of great depth and detail that could then be transmitted to Earth.

In fact, so detailed is the  structure – dubbed Blackthorn Salt – in the image, and such is the depth afforded by the picture Simeon Schmauss was able to produce a 3D model of it using Sketchfab, allowing us to see it really up close and from almost any angle – click the image below and see for yourself. However, when doing so, please note that the blurred and “draped” grey elements seen “hanging” from the structure’s arm / branches when looking at it from the side are not a part of the structure, but are artefacts of the Sketchfab rendering process, as the image from MAHLI doesn’t show what is directly below the arms / branches.

Curiosity itself continues to explore and climb “Mount Sharp”, attempting to make its way to higher slopes. Most recently, it has been making its way along a shallow and short “valley” that will hopefully provide access to the “Greenheugh Pediment” – a comparatively gentle slope, formed by water erosion and lying at the base of the mound’s steeper slopes. It is hoped that by crossing the Pediment will lead to a long valley (Gediz Vallis), which is hoped will provide a route further up “Mount Sharp”.

Since arriving on Mars in august 2012, the rover has travelled 27.3 kilometres and has gathered and analysed 34 rock samples and six soil samples, all of which indicate Gale Crater was once a warm, wet environment that may well once have harboured all the fundamentals for life to form.

Curiosity’s route up “Mount Sharp” from Pahrump Hills to its currently location, where it is making its way towards “Greenheugh Pediment”, which offers a way to Gediz Vallis (below the bottom edge of this image), a route upwards to the upper reaches of the mound, and which appears to be a confluence of numerous channels, possibly formed by water, running downslope from the high ground. Credit: NASA/JPL

Russia Stops Soyuz Launches out of Europe’s Spaceport, French Guiana

Following the sanctions imposed on Russia due to the invasion of Ukraine, Roscosmos has announced it is halting all cooperation with Europe with regards to Soyuz launches out of Europe’s Spaceport, French Guiana and withdrawing its 87 support personnel from the launch site.

The announcement will immediately impact the launch of two Galileo navigation satellites that had been scheduled for April aboard Soyuz, and potentially a follow-up launch of another pair of Galileo satellites due later in the year.

Also potentially impacted are Two ESA missions: the EarthCARE Earth science mission (developed in partnership with JAXA (Japanese space agency) and scheduled for February 2023, and the Euclid infrared space telescope (March 2023), together with the French government’s military CSO-3 reconnaissance satellite.

The Soyuz launch platform at Europe’s Spaceport, Kourou,

Soyuz is offered as a launch vehicle through French launch service provider Arianespace alongside of Ariane and Vega launch vehicles, with Arianespace, through its shareholding in Starsem, can also broker payload launches on Soyuz out of the Baikonaur spaceport, Kazakhstan. However, the future of Soyuz launches out of French Guiana has been the subject to debate for some time, given that Arainespace has been keen to move customers to their new Ariane 6 and Vega-C launchers, both of which are set to enter service from 2022.

No comment has been made by either the European Space Agency or Arianespace on the matter – but both are due to meet to discuss matters on Monday, February 28th. In terms of space cooperation, suspending Soyuz launches out of French Guiana is pretty much the only lever on space matters Russia can pull without adversely impacting their own operations; something that is in stark contrast to 2014, when Russia annexed Crimea.

At that time, the United States was reliant on Russia for both crewed launches to the ISS, and the supply of RD-180 motors used by the Atlas 5 vehicle. However, the US now has the SpaceX Crew Dragon vehicle for ISS missions, which should, in 2023, be joined by Boeing’s Starliner, while United Launch Alliance will be retiring the Atlas 5 (there are only 25 more launches on the books, and has sufficient RD-180 motors for many of those flights).

Dmitry Rogozin, the head of Roscosmos also suggested that sanctions could impact Russian co-operation with the ISS, warning that without Russian support, the space station could fall into “uncontrolled descent from orbit and then falling onto the territory of the United States or Europe”.

Progress resupply craft (green, in the background of this image) have generally used to periodically boost the altitude of the ISS – a job previously performed by the US space shuttle. However, there is no reason why the Orbital Science’s Cygnus resupply vehicle could not perform the same role. Credit: NASA

The threat is based on the fact that Russian Progress resupply vehicles are periodically used to raise the space station’s orbit as drag with the tenuous atmosphere causes it to lower. However, the US and Japan both have the potential means to boost the orbit, whilst away from Rogozin’s tweets, NASA and Roscosmos alike have stated ISS operations continue to pretty much be “business as usual”.

Notably excluded from any threats – for the time being – is the European ExoMars mission, due to see the Rosalind Franklin rover and a Roscosmos-made lander launched to Mars from Baikonur in September atop a Proton-M rocket. This is a particularly critical launch, as the available window only lasts 12 days and if missed will mean another 26-month delay to the mission, which had initially been set to launch 2020.

Space Image of the Week¹

I am virtually sure it’s the most detailed ISS lunar transit to date 😊
I had to ride 250 km from home and find a remote place in the countryside between the blankets of fog, for this 1/2 second transit at 27000 km/h.

– Thierry Legault

The above comments refer to the image below, showing the International Space Station crossing between Earth and the Moon, captured by French amateur astronomer and astro-photographer Thierry Lagault, who travelled from Paris to Bourges in January 2022 in the hope that the winter weather would allow him to capture the space’s passage across the full Moon.

ISS lunar transit by Thierry Legault, Note the image is oriented so south is at the top of the image. The bright crater above and to the right of the ISS in Tycho. Credit: Thierry Legault.
The image is being credited at one of the most detailed pictures of a ISS lunar transit every captured. It is so detailed, is it possible to see details of the primary solar arrays at either end of the station’s main truss structure, as can the structure of the station’s pressurised modules.

An enlarged version of the image, rotated through 90º so that south is to the right, reveals even more detail – the Russian modules of the ISS pointing towards the top of the image, and the US / international modules pointing down.

ISS lunar transit by Thierry Legault (enlarged and rotated). Credit: Thierry Legault.

Sierra Space Looks to Expand Dream Chaser Opportunities

Sierra Space, formerly the space development arm o Sierra Nevada Corporation, is looking to enhance and extend operations of its Dream Chaser winged space vehicle designed to be launched vertically atop a rocket and capable of making horizontal runways.

Originally planned to be a crewed launch vehicle for ferrying crews to / from the International Space Station, Dream Chaser ultimately lost out on NASA’s commercial crew programme to SpaceX and Boeing. However, development of the vehicle continued, switching to focus on a cargo variant, capable of carrying up to 5.5 tonnes of cargo and supplies to the station and returning 1,750 Kg on experiments and /  and/or waster from the station. The first launch of this version is due to take place in either Q4 of 2022 or Q1 2023.

In addition, the cargo variant has been proposed as a key element of logistical support for Orbital Reef, the proposed commercial space station from Sierra Space and Blue Origin. Beyond this, the company has been looking for opportunities to expand Dream Chaser operations. These include seeking broader opportunities for cargo launches beyond the ISS – and Dream Chaser will launch the first mission for the United Nations Office for Outer Space Affairs in 2024, delivering a total of 35 payloads to orbit on behalf of nations with no other means to access Earth orbit.

Space Science’s Dreamchaser Cargo

The quest for broader operations includes seeking landing zones around the world to broaden Dream Chaser’s orbital reach. Most recently, this includes Kanematsu Corporation and Oita Prefecture in Japan to use Oita Airport – which the local government is keen to turn into an operational spaceport.

To this end, the local authority already has an agreement in place with Virgin Orbit, which will see the airport used as a Far East launch facility for the company’s air launched LauncherOne vehicle and its 747 carrier aircraft. Sierra Space can envisage a future where the Oita Space Port is a hub for Dream Chaser landings, potentially opening the company to the Japanese commercial payload market.

In addition, the company is pursuing opportunities to resume development of the crewed Dream Chaser, and a possible third variant with a payload bay that can be depressurised for the deployment of orbital payloads – which the company suggest might be of interest to US national security operations.

  1. With thanks to Vinyl Vortex for the pointer.