Category Archives: Other Worlds and Tech

Space Sunday: 100+ planets, taking a balloon to orbit, and budgets

A chart showing the to-scale sizes of two planets, 19 moons, 2 asteroids, and 87 trans-Neptunian objects, all of which could technically be considered planets orbiting our Sun. Credit: Emily Lakdawalla. Data from NASA / JPL, JHUAPL/SwRI, SSI, and UCLA / MPS / DLR / IDA, processed by Gordan Ugarkovic, Ted Stryk, Bjorn Jonsson, Roman Tkachenko, and Emily Lakdawalla

When is a planet not a planet – or more precisely, when should what is not regarded as a planet be a planet?

Right now, according to the International Astronomical Union (IAU), our solar system comprises eight formally recognised planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. That’s been the case since 2006, when the IAU opted to classify bodies orbiting the Sun in three ways:

  • As planets – defined as a) celestial bodies that (a) are in orbit around the sun; b) have  sufficient mass for their self-gravity to overcome rigid body forces so they assume a hydrostatic equilibrium (nearly round) shape; c) have cleared the neighbourhood around their orbit of other objects
  • As Dwarf planets – defined as celestial bodies which a) orbit the sun; b) have sufficient mass for their self-gravity to overcome rigid body forces to assume hydrostatic equilibrium (aka “is nearly round” in shape);  c) have not cleared the neighbourhood around their orbit; and d) is not a natural satellite
  • As Small Solar System bodies:  all other objects except satellites orbiting the Sun.

A composite image showing Pluto and Charon to scale to one another (but not at a scale separate from one another) using images returned by the New Horizons mission. Credit: NASA / John Hopkins University APL / SwRI

Thus, since 2006, Pluto has been a dwarf planet. However, moves are afoot to get things changed – and not just for Pluto.

In a paper authored by planetary scientists involved in the New Horizons mission which zipped through the Pluto system in July 2015, there is a call for the term “planet” to be redefined; if not by the IAU then at least in popular use. Should it happen, it could see the number of planets in the solar system leap from 8 to over 100.

The scientists argue that the IAU definition of “planet” focuses only on the intrinsic qualities of the body itself, rather than external factors such as its orbit or other objects around it. In fact, under the IAU’s definition, Earth, Mars, Jupiter and Neptune don’t actually qualify as “planets” as none meet the third criteria (c) – Earth, for example, has regular “close encounters” with asteroids which cross its orbit. Instead, the team offer a simpler definition:

A planet is a sub-stellar mass body that has never undergone nuclear fusion and that has enough gravitation to be round due to hydrostatic equilibrium regardless of its orbital parameters.

Such a definition would mean that Pluto could regain its planetary status – as would the proto-planet (or small solar system body) Ceres, the dwarf planets of 136199 Eris (discovered in 2005, and the trigger-point for Pluto’s “downgrading”) , 136472 Makemake, and 136108 Haumea, together with (possibly) 50000 Quaoar, 90377 Sedna, 90482 Orcus and a host of trans-Neptunian objects tumbling around the Sun. Nor is that all; the new definition would also mean that the likes of  Jupiter’s Galilean moons, Saturn’s Titan and  Enceladus, Neptune’s Triton and many other bodies we regard as “moons” would be lifted to planetary status – including our own Moon.

A composite image using data gathered by the radar imager aboard NASA’s Cassini mission to Saturn to look through the normally opaque haze of Titan’s dense atmosphere to reveal its planet-like surface. Credit: NASA/JPL / University of Arizona

The paper proposing the change will be presented at the Lunar and Planetary Science Conference on March 20th to 24th, 2017 in Texas. And it has already come in for some criticism.

Mike Brown is the scientist largely behind Pluto’s demotion. Currently engaged in the search for the elusive “Planet Nine”, he (somewhat harshly) sees the efforts of the New Horizons team to get Pluto reclassified as being  about them wanting the prestige of having run a planetary mission, more than anything else.

However, there are valid reasons for seeking some kind of change, even if it is only informal. One is as basic as gaining more public interest in efforts to explore and understand the many environments found on planets and moons alike within our solar system.

“Every time I talk about this [the science and data gathered about Pluto by New Horizons] to the general public, the very next thing people say is ‘Pluto is not a planet any more’,” said Kirby Runyon, the lead author of the paper. “People’s interest in a body and exploring it seems tied to whether or not it has the name ‘planet’ labelled on it.”

How Pluto compares with other large Trans-Neptunian Objects, some of which also have their own moons. Earth and our moon can be seen at the bottom of the picture. Credit: Lexicon / Wikipedia, using NASA / Hubble Space Telescope data

There are scientific reasons for the definition to be broadened as well. Places like Pluto, Ceres, Europa, Io, Ganyemede, Callisto and Triton all evidence geophysical, hydrothermal, atmospheric and other characteristics very much in keeping with bodies such as Earth, Mars, and Venus. They are thus of exceptional interest to planetary scientists the world over. In fact, many of them (like Pluto) are completely re-writing our understanding of “planetary bodies”.

Ultimately, the team behind the paper aren’t going to put their proposal before the IAU for a change in the “official” definition of “planet”.  “As a geophysical definition, this does not fall under the domain of the IAU, Runyon notes, “[It]  is an alternate and parallel definition that can be used by different scientists. It is “official” without IAU approval, partly via usage.”

Continue reading


Space Sunday: submarines, balloons and rockets

The four Galilean moons of Jupiter from volcanic Io (l) to distant Callisto (r). Europa and Ganymede (2nd and 3rd respectively) are thought to have liquid water oceans under their icy crusts, and each will be investigated by upcoming NASA (Europa) and European (Ganymede) missions. Callisto also may have a subsurface ocean, although it is thought to be more likely frozen or at least slushy ice. It will also be examined by the European mission

At the end of February / start of March 2017, NASA hosted the “Planetary Science Vision 2050 Workshop” at their headquarters in Washington, DC. The workshop covered a number of ideas for the future exploration of the solar system using automated means.

Two of the more interesting areas of discussion were the exploration of the “ocean worlds” of the solar system, notably Jupiter’s Europa and Saturn’s Enceladus. The other was options for exploring Saturn’s moon Titan.

The “Icy Worlds”

As I’ve recently reported Europa is already the target of the upcoming Europa Multi Flyby mission, due to launch in the early 2020, and which is now known once more by its earlier title of Europa Clipper. However, at the workshop, scientists looked at future options for exploring it,  starting with the lander mission already being planned as a follow-on mission.

What makes these icy worlds so interesting is that under their crusts of ice, there may well be oceans of liquid water. Europa and Enceladus in particular have demonstrated very strong signs that under a surface coating of ice, they have liquid water oceans, perhaps 100 km (62.5 mi) deep in the case of Europa.

Europa’s internal structure, showing the subsurface ocean which could be up to 100 km (62.5 mi) deep. This layer might also either be relatively solid ice or icy slush, depending on the amount of heat being generated deeper inside Europa

These oceans are kept in a liquid state due to gravitational flexing: they are constantly being pulled in different directions by the gravities of their parent planet and the other moons in orbit around it. The flexing generates heat, and this heat could be sufficient to keep the water trapped under the ice crust of such a world in a liquid state. It could also mean that the ocean bed of such a world might be the locations of hydrothermal vents and fumeroles which are pushing out the heat, energy, minerals and chemicals needed to kick-start life.

The reason Europa’s ocean might be liquid is flexing. The gravitational pull of Jupiter and from the other Galilean moons constantly plays on Europa, causing it to flex as it is pulled in different directions. This flexing generate heat deep inside the moon, and this heat could both radiate out to warm the waters of the ocean and give rise to hydrothermal vents of the sea bed, which could harbour basic life

Europa, Ganyemede and Callisto, around Jupiter show every indication of such sub-surface oceans, although Ganyemede’s and Callisto’s case, it might be more icy slush than liquid water. Both will be the subject of study by Europe’s Jupiter Icy Moons Explorer, due for launch in 2022.

Europa’s ocean is believed to be liquid both as a result of spectral analysis of the ice covering it, and because images of the moon captured by the Hubble Space Telescope appear to show huge geysers erupting from the moon’s south polar regions.

Geysers of water vapour have also been seen erupting from Enceladus by NASA’s Cassini mission, indicating it also has a liquid ocean under its covering of ice.

Worldlets like Ceres and Pluto also appear to have liquid interiors overlaying their cores, although the processes that might by allowing such liquid layers – likely water – have yet to be properly understood.

Of them all, Europa perhaps shows the strongest evidence for harbouring life-giving nutrients within its oceans, marking it as a prime candidate for study. This is because of the reddish-brown staining covering much of its surface. Most of this is likely debris from the huge volcanic eruptions which occur on Io, the innermost of the Galilean moons of Jupiter, and the one experiencing the greatest levels of gravitational flexing. However, some of Europa’s straining might be material deposited as a result of geyser action, particularly where the stains appear to run along many of the fault lines which crack Europa’s surface.

Given all this, planetary scientists are itching to get a vehicle onto the surface on Europa and – if possible, get one through the ice and into the ocean beneath it. Hence the discussions at the NASA workshop.

A dramatic line of plumes spray water ice and vapour from the south polar region of Saturn’s moon Enceladus as seen by the Cassini mission in February 2005. Similar venting of water may give rise to some of the brown stains of material covering much of Europa’s surface Credit: NASA/JPL / Space Science Institute

As I noted in writing about Europa Clipper (see the link above), a lander mission is already in the advanced planning stages thanks to strong support for missions to Europa in Congress. It could potentially take place just a couple of years after Europa Clipper arrives in orbit around Jupiter, and would have three mission objectives:

  • Search for biosignatures and signs of life by analysing the surface and subsurface deposits on Europa, particularly recently erupted material near the lander’s location
  • Analyse the composition of the surface ice and determine the proximity of liquid water beneath the ice
  • Attempt to identify the dynamic processes responsible for shaping Europa’s surface and its properties.

An artist’s impression of a possible Europa submersible, with it deployment system in the background. Credit: NASA

If the lander mission detects signs of life or strong evidence of life-giving materials within Europa’s ice sheet, then it will  likely pave the wave for the most ambitious mission of all: sending a vehicle to Europa with the means to penetrate the surface ice and release an automated submersible into the waters below to search for possible life.

While there is no time frame for such a mission, it has long been a goal for NASA and scientists. So much so that there have been numerous studies and even competitions for such vehicles, and a broad range of proposals and designs have been put forward. As such, it could be that such a mission could follow the Europa lander mission relatively quickly – perhaps within a decade.

Continue reading

Space Sunday: Moon flights and the winds of Mars

The Dragon 2 crew capsule attached to its service module. Credit: SpaceX

The Dragon 2 crew capsule attached to its service module. Credit: SpaceX

While most private space tourism companies are busily going about various routes to offer sub-orbital flights to those who can afford them, Elon Musk’s SpaceX has stepped into the arena – and, as might be expected, made the bold announcement it will go one better: fly paying passengers around the Moon and back. And they plan to do it in 2018.

The announcement was made by Musk on Monday, February 27th during a press teleconference. If the flight goes ahead, it will allow two fare-paying passengers the opportunity to undertake a week-long journey out to and around the Moon, before returning to Earth. The flight would use a “free return” profile which would see it skim over the surface of the Moon and continue outward beyond it, possibly as far as 480,000 Km (300,000 mi) from the Earth (the average distance of the Moon from Earth is around 384,400km /  240,000 mi), before Lunar gravity takes over and hauls the vehicle back towards the Earth, where it would splash down.

It’s not clear how much the passengers would pay to be on the flight – but the going price for a seat aboard the Dragon 2 vehicle, which would be used for the flight, will be around US $58 million a pop to get to the International Space Station, once it enters service. It’s also far from clear if SpaceX can actually deliver on the goal of launching the flight in late 2018.

SapceX plan to use the Falcon Heavy as the launch vehicle for the lunar flight. When it enters service later in 2017, the Falcon Heavy will be the most powerful launch vehicle in the world today

SapceX plan to use the Falcon Heavy as the launch vehicle for the lunar flight. When it enters service later in 2017, the Falcon Heavy will be the most powerful launch vehicle in the world

In order to take place, the flight first and foremost needs a launch vehicle and a suitable space vehicle. SpaceX plan to use their mighty Falcon Heavy and – as noted – their new Dragon 2 crewed vehicle. There’s just a couple of problems with both.

The Falcon Heavy is not due to fly until some time later in 2017, and even then it will not be rated for crewed launches. For that to happen, it will have to be certified for crew use, and depending on how the initial flights go, that could take time. In terms of the Dragon 2, that is not scheduled to enter service until 2018 – and even then, its primary function is to fly crews to and from  the International Space Station (ISS).

Ferry flights to the ISS are vastly different to going out around the Moon and back. To start with, the outward flight from Earth to the ISS can be measured in just a couple of days – around a quarter of the time needed for the lunar trip.  The velocity (delta vee)  imparted to a spacecraft going to the ISS (28,000 km/h / 17,500 mph) is also a lot less than required to go to the Moon (40,000 km/h / 25,000 mph).

Elon Musk unveils a mock-up of the Dragon V2 capsule in May 2014. SpaceX now has their firs NASA contract to fly a crew to the ISS aboard the vehicle, probably in 2018

Elon Musk unveils a mock-up of the Dragon 2 capsule in May 2014.Credit: SpaceX

This means a returning Dragon 2 will be re-entering the Earth atmosphere a lot faster than the same craft coming back from the ISS, and will have to face much higher re-entry temperatures and a harsher deceleration regime. While the Dragon 2 can in theory do so, it is likely that significant testing on uncrewed vehicles will be required before the Federal Aviation Authority and NASA agree to any such flight taking place. On top of this, it will have to be demonstrated that the Dragon 2 can be outfitted for a deep space mission and keep a crew alive and well for around 7-8 days.

Given all this, there are widespread doubts the company can meet a 2018 deadline for such a mission – and SpaceX has tended to be ambitious with its time frames for achieve goals. They had originally slated 2013 as the year in which the Falcon Heavy would make its first flight – although in fairness, setbacks following the loss of two Falcon 9 vehicles also contributed to its launch being pushed back to 2017.

Red Dragon Delayed

As further evidence of SpaceX presenting time frames which are perhaps a little ambitious, on February 17th, the company announced its mission to land a variant of the Dragon 2 – dubbed Red Dragon – on Mars has been pushed back from 218 to 2020.

The aim of the mission so to fly an uncrewed 10-tonne Dragon 2 vehicle to Mars and land it safely. In doing so, the company hopes to gain valuable data on landing exceptionally heavy vehicles on Mars using purely propulsive means. This is because crewed landing vehicles on a Mars mission are liable to have a mass of at least 40 tonnes – far too much to be safely slowed in a descent through the thin Martian atmosphere by parachutes.

A SpaceX / NASA infographic outlining the Red Dragon mission - now slated for 2020

A SpaceX / NASA infographic outlining the Red Dragon mission – now slated for 2020

The planned mission would be undertaken entirely at the company’s own expense, although it would can science instruments and experiments supplied by NASA. For Musk it, and possibly three further Red Dragon mission which could follow it in the 2020-2024 time frame, is a vital precursor to greater ambitions for Mars.

As he outlined in September 2016 (see: Musk on Mars), Musk plans to start launching crewed missions to Mars, possibly before 2030. The initial missions will doubtless be modest in size in terms of crew and goals. However, his overall stated goal is to kick-start the colonisation of Mars. To do that, he plans to use vehicles massing at least 100 tonnes and which can make a propulsive landing on Mars. Whether he can succeed in even the step to land a crew on Mars  – and bring them back to Earth – remains to be seen. However, his Red Dragon mission is an important first step.

Continue reading

VR and MR catch-up: March 2017

The Oculus CR-1 - US $100 drop in price, and US $100 reduction for Touch controllers

The Oculus CR-1 – US $100 drop in price, and US $100 reduction for Touch controllers

Here’s another rapid-fire update on the worlds of VR and MR as I’ve been able to track a few things.

Oculus Rift

Oculus VR has dropped the price of the Oculus Rift headset and the Oculus Touch controller by $100 each. At launch, the headset cost Us $599 and the controllers, released later and a crucial part of the system, were priced at US $199. The new pricing brings the price for both down to the US $598 mark – just US $100 more than the Playstation VR bundle, and makes the Rift headset much cheaper than its main rival – the HTC Vive.

“Cheaper” is of course a relative term. Despite work to allow the Rift operate with lower-specifications systems (see my last round-up), to get the fullest out of the system you still need a heft PC with a hefty price.

There is still no news on when the untethered version of the Rift, with the project name Santa Cruz, will be ready for consumers. The only major update is that when it does appear, it will be marketed via Oculus VR’s “lower end” mobile division.

Speaking at the announcement of the price drop, Oculus VR’s former CEO (now head of Desktop VR), Brendan Iribe, indicated that the company is focusing on the next generation of VR systems, which he defines as being “a very big leap from where we are today”. However, consumers are unlikely to see anything on this front for at least another two years.

On February 1st, the ZeniNax case against Facebook / Oculus drew to a close, with the plaintiff being awarded US $500 million in damages over alleged code theft. While Facebook is seeking to have the verdict set aside, on February 24th, ZeniMax filed an injunction seeking to block Oculus VR from using the disputed code in its products. The news came via several outlets at the time, including Ars Technica, which pointed out that the injunction probably won’t succeed, but that if it does, it could be massively disruptive to both Oculus and Samsung, as the code is also used in the Gear VR.

HTC Vive 2?

Rumours are circulating that HTC are working on the “Vive 2”, an improved version of their headset.  Details have been sketchy and a little confused; one early report from November 2016 suggested the “Vive 2” would be a wireless / WiFi system, but given this came out shortly before HTC and Vive X Accelerator company TPCAST announced a “tether-less” WiFi kit for the existing Vive, (see me last round-up, linked to above) that report many have been incorrect.

However, other sources have indicated that “Vive 2” is in development, but has not release date. It is also said to have the internal code-name of “Oasis”. Has someone at HTC been reading Ready Player One?

In the meantime, HTC aren’t cutting the Vive’s price – but they are offering a new finance plan to help purchase it. They’ve also announced two new accessories: a Deluxe Audio Strap and the Tracker. Both are priced at a “mere” US $99. The Deluxe Audio Strap is in fact a rigid, Oculus-style head mount for the headset, complete with headphones.

Vive's new rigid head mount for the display, complete with audio headphones. Your for US $99

Vive’s new rigid head mount for the display, complete with audio headphones. Yours for US $99

The Tracker, due to ship in Q2 2017, is essentially a sensor unit  which allows game and hardware developers to turn real-life props into virtual weapons / gaming pieces, from guns to swords, to bats and so on.  Once connected to a peripheral, it allows the Vive’s lighthouse sensors to detect and track it, enabling it to be visualised in-game.

Headset Sales

As has been widely reported, sales of VR headsets have been far slower than the early hype predicted. No surprises there in many respects. Currently, Sony’s Playstation VR system is the highest-selling – but that’s just about to hit the million units mark. Oculus Rift and Vive are some way behind, with 243,00 and 420,00 unit sales respectively at the end of 2016.

This plateauing of sales has led to some pundits almost writing-off VR. However, while it would seem likely VR will be a niche product when compared to the everyday potential of Augmented Reality / Mixed Reality (AR / MR), it’s worth remembering that consumer-centric VR is only at the first generation stage. It is hampered by cost and the need to be hooked into a high-specification PC. Over time, some of these aspects – especially cost – will come down, encouraging more widespread interest / adoption, especially in those markets outside of games where VR could have a real impact: education, training, simulation, design, architecture. So it is perhaps a little premature to be pointing at current sales figures and declaring VR a “fad” or similar.

Continue reading