Space Sunday: Mars wake-ups, SpaceX and NASA updates

Looking over Utopia Planitia – a panoramic image captured by the mastcams on China’s Zhurong rover ahead of its period of “hibernation” during the October 2021 conjunction. Credit: CNSA/PEC

The 2021 Earth-Sun-Mars conjunction that saw Earth and Mars on opposite sides of the Sun, interrupting all communications between the two, is now over. This means that the multi- national missions on and around the red planet (America, Europe, the UAE, and China) are switching back from automated activities to more regular operations.

China’s Tiawen 1 orbiter and their solar-powered rover surprised mission controllers by calling home earlier than had been anticipated, to report that they are resuming science operations after their enforced semi-hibernation. The wake-ups come in advance of a change in both missions that will be taking place in early November.

At that time, the Tianwen 1 will switch to a new mission phase, a global mapping and analysis of the Martian surface and subsurface with its suite of seven science instruments. This will reduce the opportunities the orbiter has to act as a communications relay for the rover from once a day to once every few days. To help fills the “gaps” when Tianwen 1 is unable to act as a relay, Europe’s long-running Mars Express orbiter is going to attempt to step up to the plate and relay communications between the rover and Earth – pending the outcome of several communications tests to take place at the start of November.

Another view across Utopia Planitia returned by Zhurong. Credit: CNSA/PEC

Down on Mars, the Zhurong rover had covered 1,182 metres from its landing platform before going into stand-by mode for the solar conjunction. Since waking up, it has resumed its trip south in Utopia Planitia, and is approaching the end of its second 90-sol period of operations, opening the door for a re-assessment of its science targets. Of particular interest to Chinese scientist are a series of “mud volcanoes” and features that may have been formed by movements of subsurface water and ice, where Zhurong’s ground-penetrating radar is expected to provide “fundamentally new perspectives” on potential subsurface Martian water ice, that might be applied to any development of past life on Mars and on the use of sub-surface water by future crewed missions.

For NASA’s Ingenuity helicopter, the end of the conjunction means a resumption of flight operations following tests to run its contra-rotating propellers at high-than-usual RPM to counter the thinning density of the atmosphere in Jezero crater as winter approaches.  This flight was initially scheduled for as early as Saturday, October 23rd, but at the time of writing had yet to be confirmed as having taken place.

Meanwhile, NASA has released a new video showcasing many of the sounds of Mars that have thus far been recorded by Ingenuity’s companion on Mars, the Perseverance rover.

“Percy” carries two off-the-shelf microphones, one mounted on it hull, the other on cover on the camera mounting frame located at the top of its instrument mast. Since the rover’s arrival on Mars, both microphones have been used to record a range of sounds both of Mars and of the rover and Ingenuity operating on the planet.

One of the two microphones mounted on the Mars 2020 Perseverance rover. Located on the moveable camera / imager housing at the top of the rover’s mast, this microphone is somewhat directional in nature. Credit: NASA/JPL

The Mars 2020 mission is the first to Mars to carry microphones that allow us to listen to the planet – but their inclusion is not merely due to idle curiosity. Listening to the sounds of the planet and the rover can reveal a lot, as mission scientist Nina Lanza, one of those behind the microphone project, explains:

First, we can learn about the atmosphere by understanding how sound propagates through it. We can also listen to the sounds of rover analyses on rocks and learn about rock material properties from that. And finally, we can also listen to the sounds the rover makes to help better understand the state of our instruments.

– Nina Lanza, Los Alamos National Laboratory

Analysis of the sound picked-up from Ingenuity’s rotors, for example, has revealed that sound propagates through the Martian atmosphere a lot different to how it had been believed. Changes in the sound the rover makes during driving and other operations could also help give an early indication of possible problems / mechanical issues, making the microphones invaluable.

SpaceX Update

With the public hearings into the Federal Aviation Authority’s draft Programmatic Environmental Assessment (PEA) report on the SpaceX “Starbase” production, test and launch facilities in Boca Chica, Texas, now completed, SpaceX continues to push ahead with preparations for its first Starship  / Super Heavy test flight and other work critical to that, and future Starship / Super Heavy launches.

The tank farm that will store and deliver propellants and other consumables to the launch facilities has seen the last of its vertical tanks and their concrete sheathing installed. At the same time as this work was progress, a set of horizontal tanks, thought to be intermediary tanks that may be used to hold propellants, etc., when detanking boosters between things like static firs tests, arrived for installation at the farm.

The Starbase tank farm showing the new horizontal tanks being installed, with the final sleeve for one of the upright tanks waiting to be lifted into position. Credit: RGV Aerial Photography

The launch facility itself has most recently seen the assembly and installation of the gigantic “Mechazilla”, the extraordinary mechanism that will both lift Super Heavy boosters onto the launch table and stack Starships on top of them (as well as being able to remove both from the launch facilities) and  – eventually – actually “catch” returning boosters and Starships, allowing (in theory) both to be rapidly turned around and re-used whilst eliminating the need for either to have complicated and heavy landing leg systems.

“Mechazilla” will achieve this by travelling up and down the launch support tower on three rails whilst having a “head” that can rotate around three side of the tower, and two huge “chopstick” arms than can open and close around a Super Heavy or Starship vehicle, allowing it to raise or lower them – and eventually catch them as they make a (hopefully) precision return to Earth that brings them down alongside the launch support tower.

The massive system will not be used for the first orbital flight attempt with Booster 4 (currently on the launch table) and Starship 20, but may be used in an attempt to catch Booster 5 (currently under construction as the “next generation” of Super Heavy vehicles)  when that launches in 2022. However, captures of Starship vehicles will not be seen for some time.

A rendering of “Mechazilla” and the QD arm mounted on the Super Heavy / Starship launch support tower at Boca Chica. Credit: Owe BL, with additional annotations

Also during the past week, Starship 20 has completed a series of static fire tests of its Raptor engines – including the first firing of a Raptor vacuum engine integrated into a Starship vehicle, and the first joint firing of a vacuum engine and a sea-level motor. Some of the vehicle’s heat shield titles were blown off during the tests, but otherwise the firings were viewed as successful.

Such is the progress at Boca Chica that Elon Musk has indicated the company will be ready to make that first orbital flight in November, pending regulatory approval. However, it would seem unlikely this would be granted in time for a November launch. The review period for the PEA doesn’t close until November 1st, and the public hearings mentioned above drew strong feedback both in support of, and against SpaceX’s expansion of the Boca Chica facilities, with the latter focused on already noticeable environmental issues.

The static fire test of a Raptor single vacuum engine and a single Raptor sea-level motor, marking the first time the both types of motor, integrated into a Starship, have been test fired. Credit: BocaChicaGal / NASASpaceflight.com

After November 1st, the FAA will require time to complete its report, incorporating all of this feedback and a separate report from the U.S. Fish and Wildlife Service. Even if the report is positive, it still has to be reviewed and digested by the arm of the FAA responsible for granting launch licences. Given that November is something of a “short” month in the US due to the Thanksgiving holiday, it seems doubtful the FAA would complete all this work and grant a licence to SpaceX for Super Heavy / Starship flights by the end of the month.

Continue reading “Space Sunday: Mars wake-ups, SpaceX and NASA updates”

Space Sunday: strange worlds, telescopes and rockets

An image of GW Orionis, a triple star system with a mysterious gap in its surrounding dust rings. UNLV astronomers hypothesize the presence of a massive planet in the gap, which would be the first planet ever discovered to orbit three stars. The left image, provided by the Atacama Large Millimetre/sub-millimetre Array (ALMA) telescope, shows the disc’s ringed structure, with the innermost ring separated from the rest of the disc. The observations in the right image show the shadow of the innermost ring on the rest of the disc. UNLV astronomers used observations from ALMA to construct a comprehensive model of the star system. Credit: ALMA (ESO/NAOJ/NRAO), ESO/Exeter/Kraus et al.

GW Orionis is a triple star system roughly 1,300 light years from Earth sitting within an extended protoplanetary disc that surrounds all three. This disc has been intriguing astronomers for the last decade, and now a team believe they have evident that the disc is home to at least one planet.

Systems of multiple stars bound by gravity are believed to be at least as common within our galaxy as single-star systems (like the Sun), and as such have oft been depicted as the home of worlds with exotic skies (think Star Wars and Tatooine’s iconic binary sunsets). But if correct, this will be the first time we have discovered a planet occupying a circumtriple orbit.

Using observations from the powerful Atacama Large Millimetre/sub-millimetre Array (ALMA) telescope in Chile, a team of astronomers set out to analyse the extended dust ring surrounding the three stars and they orbit their common centre, only to discover that rather than being fairly uniform, the dust ring has a substantial and persistent gap within it.

After running through a wide range of simulations to explain the gap, including trying to find some bizarre form of “gravitational torque” imposed on the disc by the three stars, the team resorted to Occam’s Razor: the simplest explanation is likely the most correct. In this case, and as several of their models demonstrated, the most consistent means to create such a gap in the disc is to plonk at least one large planet, around the size of Jupiter, into it.

It’s really exciting because it makes the theory of planet formation really robust. It could mean that planet formation is much more active than we thought which is pretty cool.

– Jeremy Smallwood, study lead author

In fact, such is the size of the gap, it is conceivable that it might be home to several planets – all of which are far too faint and too distant to be directly observed, but some of which might be Earth-sized solid bodies. This doesn’t mean they might harbour life, but they would make for a fascinating study.

Further work is to be conducted in an attempt to confirm the team’s findings and possibly refine their model of this complex system.

NASA Round-Up

SLS Launch “Likely” to Slip to 2022

As I’ve noted in a number of Space Sunday updates recently, the first flight of NASA’s Space Launch System (SLS) rocket has increasingly looked like it will slip back into 2022, the result of a number of programmatic slippages that, together with restricted working practices introduced by NASA during a good part of 2020 to deal with the SARS-CoV-2 situation, have resulted in most / all of the “spare” time built into the programme to handle unanticipated delays being been eaten up.

Speaking on September 30th, 2021, NASA Associate Administrator Bob Cabana noted that while the agency was not committed to a specific launch date other than “late 2021” for the mission – called “Artemis 1” and intended to fly an uncrewed Orion capsule around the Moon and back in an extended flight – it will now “more than likely” see it slip into early 2022.

An unusual view of the first SLS stack inside NASA’s Vehicle Assembly Building at Kennedy Space Centre. A mass simulator on top of the rocket will soon be replaced by the Orion spacecraft. Credit: NASA/Frank Michaux

The vehicle stack of core stage, upper stage and solid rocket boosters have just completed a series of “modal tests” within the Vehicle Assembly Building (VAB) at the Kennedy Space Centre, Florida. These involved subjecting the stack to a range of vibrations and shaking it to determine the full range of frequencies and vibrations it will experience during launch and ascent in order to programme the flight software and navigation systems so they can be correctly responded to, and an deviance from the “norms” identified and dealt with.

These tests should have been completed in August 2021, paving the way for the Orion capsule and its service module to be mated with, and integrated into, the rocket. This work is now scheduled to commence on October 13th. After that, the entire stack will be rolled out to Launch Complex 39B for a wet dress rehearsal in which the core stage is loaded with propellants in a practice countdown that stops just before ignition of the four main RS-25 engines. Following the test, the rocket will roll back to the VAB for final reviews and pre-launch preparations, before taking a final ride to the pad ready for launch.

Space Telescopes Update

NASA’s James Webb Space Telescope (JWST), the next great space-based telescope, remains on course for a December 18th, 2021 launch. However, the observatory continues to be a source of controversy.

JWST is named for James E. Webb, the second NASA Administrator to be appointed, and the man who saw the agency through the Mercury and Gemini programmes – the latter critical to the Apollo lunar landings – between 1961 and 1968. However, prior to that, he served as Undersecretary of State from 1949–1952, a period which saw the “Lavender Scare”, when many LGBTQ people were driven from roles in government service – a fact that recently (and somewhat belatedly, given the life-time of the programme) has given rise to calls for the telescope to be re-named.

JWST with its primary mirror folded, undergoes a final testing in deploying its boat-like Sun shield earlier in 2021. Nasa has quietly stated that despite objections, the telescope will not be re-named. Credit: NASA

NASA had said it would look into the matter, but this week – without formal announcement or indication of precisely how it did so – leaked word via National Public Radio in the United States that it has conducted “an investigation” and found “no cause” for the telescope to be renamed. The decision and the manner in which NASA has handled it have heaped scorn upon the agency by those who launched the campaign and who signed a petition on the matter forwarded to NASA – many of whom are from the science and astronomy communities.

Elsewhere, the next space-based telescope NASA will launch after JWST – the Nancy Grace Roman Space Telescope (formerly WFIRST) – has received both good and bad news.

The good news is, the telescope successfully passed its critical design review, signalling that all developmental engineering work is now complete, and it can move on to the assembly and testing of the telescope itself.

A next-generation observatory, the NGRST will peer across vast stretches of space and time to survey the infrared universe. Thanks to the mission’s enormous field of view and fast survey speeds, astronomers will be able to observe planets by the thousands, galaxies by the millions, and stars by the billions. As such, it is very much an heir to the Hubble Space Telescope (HST) on which parts of it are based, and entirely complimentary to the work of JWST.

An artist’s rendering of the Nancy Grace Roman Space Telescope in space. Credit: NASA

The bad news is that the telescope – which the Trump Administration repeatedly tried to cancel despite its real-time low cost thanks to its use of “spare” HST elements – has now genuinely started to incur cost overruns. These are the direct result of the SARS-CoV-2 pandemic in 2020 as a result of the restrictive working practices NASA had to implement to protect their employees, together with disruption of critical supply chains also as a result of the pandemic. These have already caused a US $400 million increase in the telescope’s estimate US $3.9 billion cost, and further increases are now expected – although there is sufficient leeway in the NASA 2021-2022 budget to meet the added costs and the estimated 7-month delay so far incurred in the telescope’s development.

Continue reading “Space Sunday: strange worlds, telescopes and rockets”

Space Sunday: SpaceX, Virgin, Blue Origin and HST updates

SpaceX: the orbital launch facilities under construction at Starbase, Boca Chica, Texas, as the 7th section of the launch support tower is hoisted into place. Credit: Bocachicagal / NASASpaceFlight.com

SpaceX are driving ahead with preparations for their first Starship / Super Heavy orbital flight – although whether the company will achieve the goal of making the launch prior to the end of July 2021, as recently re-stated by company president and COO Gwynne Shotwell – would seem unlikely at this point in time.

Following the successful flight of Starship SN15 on May 5th, 2021, the company has taken a step back from medium and high-altitude test flights to focus on tasks that are core to that first orbital attempt, with the on-going construction of the orbital launch facilities and fabrication of both Starship prototype SN20 that will attempt the flight, and the Super Heavy booster that will lift it into the sky.

However, as recently announced by SpaceX CEO Elon Musk, that booster will not be the unit everyone had been watching so keenly through its assembly at the company’s Starbase facilities at Boca Chica, Texas.  That honour will now go to Booster 4, still under construction.

A comparison between the sea-level Raptor engine (l) and the vacuum Raptor with its much larger exhaust bell (r). Three of each will be used to power orbital Starships, and 12 sea-level and sixteen vacuum motors will initially power Super Heavy boosters, rising to 16 of each as booster development progresses. Credit: SpaceX

Instead, Booster 3 (originally called BN3 for “Booster Number 3”, then re-designated in June as BN2 before undergoing a further change to its current designation) is to be used for further ground tests. These tests will, according to Musk, directly impact the internal design of Booster 4; if so, this would likely make any orbital flight attempt within the next month even more unlikely.

As I reported in Space Sunday: Selfies, Missions, Budgets and Rockets, a smaller section of a Super Heavy, designated BN2.1 has already completed cryogenic and hydraulic pressure tests designed to test thrust puck / tank integrity, and the tests with Booster 3 will expand on these. To this end, following the BN2.1 test mount was relocated to Orbital Test Stand A, one of the two launch stands previously used for Starship flight tests. Then, on July 1st, and with the rig in place and ready to receive it, Booster 3 was rolled out of the fabrication facility and driven the two(ish) kilometres down the road to the launch area and then lifted onto the stand.

In the coming weeks, the booster – currently without any Raptor engines mounted on it – will likely be put through various proof tests using both liquid nitrogen and actual fuel loads to check the overall structural integrity of the entire design. Some have suggested that these tests might see the booster fitted with a group of sea-level Raptor engines (the test stand doesn’t allow for mounting the vacuum engines) for a static fire test. However, if Booster 4 is to be substantially different to Booster 3, then such a test could be of questionable value; thus, others have speculated that Booster 3 might actually be pressure tested to destruction using liquid nitrogen, as was seen during early tank tests with partial builds of the Starship.

The 65-metre tall Booster 3 test article being moved from the Boca Chica fabrication facilities to the test and launch facilities, July 1st, 2021. Credit: NASASpaceFlight.com

In the meantime, the orbital launch stand is under construction in two parts: the base of the stand and the massive launch table that will sit on top of it to actually mount and hold a Super Heavy booster and Starship prior to launch. Alongside the launch stand base is the massive support tower that has been rising section-by-section into the Texas sky, and which is now awaiting the hoisting and fitting of its uppermost section, which will eventually mount the crane that will lift and stack boosters and Starships onto the launch table.

Whilst at an advanced stage of construction, the tower still needs a lot of fitting-out with the infrastructure required to support a launch. Similarly, construction on the staging areas where boosters and Starships moved down to the launch facilities from the fabrication and assembly area will be placed prior to being stacked for a launch, has only just started – although this could be completed in relatively short order.

Just across from these staging areas, the fuel tank farm comprising 7 tanks that will house the fuel stocks need to fuel both Starship and booster ahead of a launch and a large water tank that will provide the massive volume of water required for the sound suppression system, also has some way to go before all 7 fuel tanks are in place and covered by their insulation sleeves, and it is not clear how much of the supporting infrastructure needed to deliver fuel and water to the launch pad has actually been implemented.

SpaceX orbital launch facilities construction: left – The base of the launch support tower with the angled ring of the launch table support structure just in front of it. Centre: the square foundations of the staging platforms for Super Heavy (uppermost) and Starship. Lower right: the fuel tank farm – the metal tanks are for housing liquid oxygen and liquid methane, the grey tank behind them is a fuel tank sheathed by an insulation tank designed to contain liquid nitrogen to help keep the fuel stocks in a liquid state, while the large grey tank to the left is the water tank for the launch sound suppression system. Credit: RGV Aerial Photography

One aspect of the facilities starting to come on-stream is the generator farm that will be used to produce liquid oxygen for launches directly from the air around them. With five of the 10 massive generators now commissioned, this farm will eventually power a process called air liquefaction, a process that splits air into nitrogen, argon and oxygen, cooling them to liquid states. The liquid oxygen will then be pumped to the nearby tank farm to be used to fuel Starships and Super Heavy boosters, and the liquid nitrogen will be used to cool the liquid oxygen and liquid a methane  stored with the tank farm and keep them in their liquid state.

Virgin and Blue Origin Updates

Virgin Orbit has completed its first commercial air-launch, delivering a payload of seven small satellites successfully to orbit. Entitled “Tubular Bells Part One”, in recognition of the 1973 album by Sir Mike Oldfield and which arguably launched what would become the Virgin empire.

The company’s 747 carrier aircraft Cosmic Girl took off from Mojave Air and Space Port at 13:50 UTC on Wednesday, June 30th to climb to an altitude of 50km, heading out over the Pacific Ocean. On reaching a point some 80km south of the Channel Islands, the aircraft released the LauncherOne rocket, allowing it to drop clear before igniting its motor and accelerating to orbit.

Virgin Orbit’s Cosmic Girl with the Tubular Bells Part One LauncherOne rocket mounted under its wing, being prepared for flight in the early hours of June 30th Credit: Virgin Orbit

On board the rocket was a combined payload of four R&D CubeSats for the US Department of Defence, two optical satellites for SatRevolution, and the Royal Netherlands Air Force’s first military satellite, all of which were successfully deployed from the rocket some two hours after Cosmic Girl took off.

The wonderful thing about Virgin Orbit is that it literally can help transform people’s lives around the world. It can put satellites up to monitor illegal fishing, check on climate change, check on the ozone layer, connect the three billion people who are not connected. And the fact we can do it from anywhere in the world … to any orbit, is unique.

– Sir Richard Branson

Following that success, on July 1st, Virgin Galactic announced that July 11th will see the first test flight for SpaceShipTwo since the company was granted an update to the vehicle’s FAA licence allowing them to start flying fare-paying passengers later in the year, a flight will see the vehicle fly with both crew and four passengers – three members of the Virgin Galactic team, and company founder Sir Richard Branson.

Whilst not carrying fare-paying passengers, as will be the case with the upcoming Blue Origin sub-orbital flight on July 20th, the Virgin Galactic flight will mean that Branson will beat Blue Origin’s Jeff Bezos in making a sub-orbital flight and gaining his astronaut wings.

Once lifted to around 15-16 km attitude by its mothership, the MSS Eve, the VSS Unity will be released to power itself up to around 80-85 km altitude in a 10-minute flight during which those on board will experience between 2 and 3 minutes of micro-gravity before the vehicle makes an unpowered return to Earth to land like a conventional aircraft.

The crew of the July 11th Virgin Galactic test flight. From left: Chief Pilot Dave Mackay, Lead Operations Engineer Colin Bennett, Chief Astronaut Instructor Beth Moses, Founder of Virgin Galactic Richard Branson, Vice President of Government Affairs and Research Operations Sirisha Bandla and pilot Michael Masucci. Credit: Virgin Galactic

This 10-minute element of the flight by VSS Unity mirrors the overall flight time for the Blue Origin New Shepherd booster and capsule that will lift Bezos, his brother and an unnamed passenger who paid US $28 million to be the first fare-paying passenger flown by the company.

Also aboard that flight, which will take place on July 20th, will be a very special guest passenger: one other than “Wally” Funk.

Born in 1939, as Mary Wallace Funk, “Wally” is a remarkable woman. Obtaining her pilot’s licence when just 20 years of age, she was the first female civilian flight instructor training military pilots, the first female Federal Aviation Agency inspector, and the first female air safety investigator for the National Transportation Safety Board. Most particularly in this instance, she was one of the Mercury 13 group – more formally, the “Women in Space” Programme founded in 1960 by William Randolph Lovelace, a former NASA flight surgeon.

1995: seven of the “Mercury 13” were guests of Elieen Collins, the first woman to pilot a space shuttle, at the launch of that mission, STS-63. From left to right: Gene Nora Jessen, Wally Funk, Jerrie Cobb, Jerri Truhill, Sarah Rutley, Myrtle Cagle and Bernice Steadman. Credit: NASA via AP

Whilst lacking official government funding, but supported by NASA, the programme saw 25 women between the ages of 25 and 40 including Funk – despite the fact she was below the minimum age for consideration) – invited to take part in astronaut training. Of the 19 who enrolled, 13 graduated, with Funk the third best in the group and actually out-performing John Glenn, the first American to orbit the Earth, in some of the tests.

Although the term “Mercury 13” is often credited with being applied by the press at the time, the 13 women were actually known as FLATS – First Lady Astronaut Trainees (FLATS), although none actually ever flew into space. The term “Mercury 13” itself was first used by Hollywood producer James Cross in 1995 when comparing the 13 to the original Mercury Seven.

Wally Funk qualified as a pilot at the age of 20. She went on to become a civilian instructor of US military pilots, and gained more that 1,000 hours as an instructor on a range of aircraft. She earned her Airline Transport Rating in 1968, and became the first female FAA field examiner in 1971. Credit: unknown, via Blue Origin

Although she never flew into space as a part of any US programme, Funk has remained highly supportive of NASA and actually purchased a ticket to fly with Virgin Galactic when they start fare-paying flights later this year. However, in what might well have been a deliberate poke at Branson and his company, Bezos invited Funk to join his July 20th flight as his “honoured guest”.

“I’ll love every second of it. Whoooo! Ha-ha. I can hardly wait! Nothing has ever gotten in my way. They said, ‘Well, you’re a girl, you can’t do that.’ I said, ‘Guess what, doesn’t matter what you are. You can still do it if you want to do it and I like to do things that nobody has ever done.

– Wally Funk

While she will not orbit the Earth, in making the trip aboard New Shepherd, Funk will nevertheless become the oldest person to date to fly in space beating – again – John Glenn, who was 77 when he flew on the shuttle Discovery in 1988.

Hubble Update: NASA taking a “Careful and Deliberate” Approach

NASA is taking a slow and deliberate approach to restoring science operations on the Hubble Space Telescope, which has been out of service since mid-June when a payload computer malfunctioned.

As I noted in my previous Space Sunday update, attempts to find the source of the issue were shifting away from the payload computer itself and towards two other components in the telescope – the Command Unit/Science Data Formatter (CU/SDF) and the primary power regulator circuits.

Further testing of both units during the week has led NASA to the decision to switch either or both the CU/SDF and the power regulator to their back-ups – but they will do so slowly. over the course of the next week or so.

The first part of this work will be a review of the procedures for making the switch-overs will be reviewed to determine if any updates need to be made in respect of the telescope’s age and changes it has seen over the years. Once reviewed, the procedures will then be tested on a “high-fidelity simulator” to ensure their suitability for active use. Then as a final step, a decision will be made one switching over one or both of the CU/SDF and power regulators, and the procedures implemented.

I have given the team very clear direction that returning Hubble safely to service and not unintentionally doing any harm to the system is the highest priority, not speed. They’re being very deliberate in their analysis and their choices of what they do. There’s two layers of review of all the procedures they come up [with]. Although we’re all impatient to have Hubble back taking science, the highest priority is to be very careful and deliberate and not rush.

– Paul Hertz, director of NASA’s astrophysics division

Space Sunday: selfies, missions, budgets and rockets

Zhurong and its lander. Credit: CNSA

You would be forgiven for thinking the banner image for this update is an artist’s impression of China’s Zhurong rover and its lander on Mars. But you’d be wrong – the image really was taken on Mars.

It is part of a batch of images the China National Space Administration (CNSA) have released charting the recent activities of their rover on the Red planet, and they are as remarkable as anything seen with the US rover vehicles, with others showing panoramic views around the rover and shots of its lander vehicle.

The Zhurong lander, part of China’s Tianwen-1 Mars mission., as seen from the rover vehicle at a distance of some 6 metres. Credit: CNSA

Captured on June 8th, the image of rover and lander was taken by a remote camera originally stowed in Zhurong’s belly, and which had been safely deposited on the surface of Mars some 10 metres from the lander, allowing mission control to remote capture the unique sight of a rover and its lander side-by-side.

Zhurong has now completed the first third of its initial 90-day mission on Mars, and is well into its survey of its surroundings within Utopia Planitia. In addition to the high-resolution cameras, used to produce these images, the rover is fitted with a subsurface radar instrument, a multi-spectral camera and surface composition detector, a magnetic field detector and a weather monitor.

A 360 panorama of the Zhurong landing site, captured by the Chinese rover prior to is descent from the back of its lander. Credit; CNSA

Ahead of the images released by CNSA, NASA released their own image of the Chinese rover and lander as seen by the HiRISE camera on the Mars Reconnaissance Orbiter  from an altitude of around 400 km.

Taken on June 6th, three weeks after Zhurong touched-down, the image clearly shows green-tinted lander (a result of the image processing, not the actual colour of the lander) sitting between two areas of surface material discoloured by the thrust of the lander’s outward-angled descent and landing motors. Zhurong itself can be seen a short way south of the lander, within the eastern arc of discolouration.

Captured by the HiRISE imager on NASA’s Mars Reconnaissance Orbiter on June 6th, this image shows the Zhurong lander surrounded by surface material discoloured by the lander’s rocket motors, with the rover sitting just to the south. Credit: NASA/JPL

And turning to NASA’s surface mission on Mars (specifically Mars 2020): on June 8th, the Ingenuity helicopter completed a 7th flight, this one error-free.

Lifting off at around 12:34 local mean solar time (roughly 15:54 UTC on Earth) proceeded south during the 63-second flight, covering a distance of around 106 metres before touching down at a new location.

Ingenuity captured this image of its shadow passing over the surface of Mars on June 8th, 2021 during its 7th flight. Credit: NASA/JPL

In difference to the 6th flight on May 22nd, which saw the helicopter encounter some anomalies (see: Space Sunday: Martian Clouds, Lunar missions and a Space Station), the seventh flight was completed with incident, once again raising confidence that the helicopter will be able to continue flying several more times.

Overlaid onto an image be NASA’s Mars Reconnaissance Orbiter are the routes for the first and second science sorties to be made by Perseverance. Credit: NASA/JPL

Now regarded as fully commissioned, Perseverance has put its duties as caretaker-watcher for Ingenuity largely behind it, as is now driving south and away its landing zone on its way to study a 4 square kilometre of crater floor, where it will examine two very different geological units and collect samples for analysis and for storage and possible return to Earth as part of a future mission.

“Crater Floor Fractured Rough” is a region of ancient bedrock, whilst “Séítah” (Navajo for “amidst the sand”) presents a mix of bedrock overlaid with more recent ridges and also sand dunes. The rover will perform a gentle loop through these areas, visiting “Crater Floor Fractured Rough” first then travelling through the ridgelands and then back up through “Séítah S” and Séítah N”, before heading for its next target, an area dubbed “Three Fours”.

ESA Looks to Venus and the Outer Planets

The European Space Agency has announced its goals for the next several decades in terms of robotic exploration of the solar system and cosmic science.

Announce on June 10th, the EnVision mission will carry a suite of spectrometers, sounders and a radar to study the interior, surface and atmosphere of Venus. The target launch period is May 2032, with the vehicle arriving in orbit around Venus in August 2033, where it will use the planet’s upper atmosphere to aerobrake into its final science orbit over a 3-year period, before commencing its four-year primary mission. It  is expected to cost around 500 million Euros.

ESA plans to further extend our knowledge and understanding of Venus with the EnVision mission, due to launch in 2032. Credit: ESA

While there has been no coordination between NASA and ESA in terms of mission selection, EnVision’s science mission is highly complementary to the two NASA missions – VERITAS and DAVINCI+ – also recently announced, covering aspects of Venus science they do not. Further, ESA will be flying science packages on VERITAS, and NASA will be providing the synthetic aperture radar for EnVision.

EnVision is the fifth M-class mission ESA has selected as part of the Cosmic Vision program. The first, Solar Orbiter, was launched in February 2020, and three others are in development: Euclid, a mission to map dark matter and dark energy to launch in 2022; Plato, an exoplanet search mission launching in 2026; and Ariel, an exoplanet characterisation mission launching in 2029.

In addition To EnVision, ESA intends to spend the next several decades developing  missions to follow after the Jupiter Icy Moons Explorer, that will help assess the habitability of the icy moons in the outer solar system and seek any biosignatures they may have. At the same time ESA intends to support further science endeavours aimed at increasing our understanding of our own galaxy and the likely state and development of the early universe.

Continue reading “Space Sunday: selfies, missions, budgets and rockets”

Space Sunday: China on Mars, JWST and a space tourist

An artist’s impression of the Zhurong rover unfolding its solar arrays shortly after its lander touched down on Mars. Credit: New China TV

On Saturday, May 16th, 2021, China became only the second nation in the world to successfully land a rover on the surface of Mars.

The 240-kg Zhurong rover touched down on the dunes of southern Utopia Planitia a few minutes after midnight, UTC (19:00 US Eastern on Friday, May 15th), some nine minutes after the lander and rover combination entered the Martian atmosphere.

The two form a part of the Tianwen-1 (Heavenly Questions) mission, operating alongside the mission’s titular orbiter, which arrived in Mars orbit in February this year. For the three months since that event, the orbiter has, as part of its overall mission, been surveying Utopia Planitia – a location first visited in the 1970s by NASA’s Viking 2 mission – in order for mission managers to confirm the best touch-down point for the lander / rover combination.

Following their separation from the Tianwen-1 orbiter, the lander and rover entered the Martian atmosphere protected by a heat shield and aeroshell, to commence an Entry Descent and Landing (EDL) very similar in nature to US Mars surface missions.

The CNSA mission control during the Zhurong lander. Credit New China TV

While China has successfully landed missions on the Moon – Chang’e 5 with its surface rover is still operating – a landing on Mars is far more complex in nature, simply because of the presence of an atmosphere that, while tenuous, nevertheless interacts with a vehicle to increase the potential for things going wrong.

However, Zhurong (named for a god of fire and of the south), completed the first part of its descent successfully, using the frictional heat generated be entry into the atmosphere to slow itself to a point where a supersonic parachute could be deployed by the aerodynamic backshell, which in turn triggered the jettisoning of the heat shield, exposing the lander / rover.

Approaching the ground, Zhurong deployed its landing legs whilst still attached to the aeroshell, prior dropping clear. once free, the lander’s rocket motor fired moving it clear of both the aeroshell and the parachute. As well as continuing to slow the craft in its descent, the rocket motor and the lander’s reaction control system worked with a downward-looking radar scan for potentially harmful surface obstacles, the motors then steering the craft away from them. The main motor then continued firing as the vehicle descended over its landing site, cutting out a couple of metres above the ground to let the lander make a soft, unpowered touchdown.

Carried out entirely autonomously, the landing appears to have been a complete success, although China has yet to confirm the precise time of touch-down or the overall status of the lander and rover. Following landing, the rover deployed its solar panels in order to commence charging its systems, while the mission control team work to carry out initial checks of the rover and prep its camera systems to take a complete a panoramic image of the landing area – although at the time of writing, images from the lander / rover had yet to be confirmed as being received.

Zhurong is roughly the size of NASA’s Spirit and Opportunity rovers  and like them, is solar-powered, although it is around 55 kg heaver. It carries a payload of six science instruments, including a laser-induced breakdown spectroscopy instrument for analysing surface elements and minerals, panoramic and multispectral imagers, a climate station, magnetometer and a ground-penetrating radar.

With an initial primary mission period of 90 sols (around 93 terrestrial days), the mission aims to return data on potential water-ice deposits, weather, topography and geology, complementing science carried out by missions from other space agencies. Given the nature of Mars missions and China’s record on the Moon with Chang’e 5, should the rover survive the initial primary mission period, its work on Mars will likely be extended.

James Webb Tests Mirror a Final Time, but Launch likely to be Delayed

The James Web Space Telescope (JWST) unfolded its massive mirror for the final time whilst on Earth in a last test before it undergoes preparations for launch.

The 6.5 metre diameter mirror is a complex mechanism made up of 18 hexagonal sections, 12 of which form the main part of the mirror and the remaining six form two fold-out elements on either side. For launch, the mirror is folded down against the main sun shield that will protect it from the heat and light of the Sun once it is in space., and the two flanking sections folded back against it.

The James Webb Space Telescope. Credit: NASA

The May 11th test saw the entire telescope supported by a special crane to simulate zero gravity, allowing engineers to run the software that will control the mirror’s unfurling using 132 individual actuators. These actuators raise the mirror, then unfold the side panels before gently bending or flexing the 18 individual mirror segments to align and focus them on the telescope’s secondary mirror that directs the light caught by the primary into the instrument aperture at the centre of the primary.

Following the deployment test, the mirror was returned to its folded and stowed position. Later this year, the 6.5 tonne 20 x 14 metre telescope will be stowed in a climate controlled shipping container for a 2-week trip to the European rocket facility at Kourou in French Guiana. Once there, it will be integrated into the payload fairings of a European  Ariane 5 rocket ready for a launch currently planned for the end of October.

That is, if the Ariane 5 cleared for launch.

Normally one of the most reliable launch vehicles on the market, the rocket has been grounded after the two last launches suffered issues with the payload fairing separation process – although the payloads from both flights were successfully place in orbit. Investigations into the issues are still in progress, but Arianespace has two launch commitments ahead of JWST, and so it is likely at the telescope’s launch will be delayed – the last in a long series of delays for JWST, all of which will hopefully mean that once it has been launched, the telescope will go on to be highly successful, operating in a halo orbit around the Lagrange L2 position on the opposite side of Earth compared to the Sun, and some 1.5 million kilometres from Earth.

Continue reading “Space Sunday: China on Mars, JWST and a space tourist”

Space Sunday: starships, helicopters and rockets

A camera close to the landing zone captures Starship SN15 with two good Raptor motor burns bringing it into a safe landing on May 5th. Credit: SpaceX

SpaceX has achieved its first successful landing of a Starship prototype after Starship SN15 was launched on May 5th, 2021.

The vehicle was the fifth full-scale prototype of the vehicle SpaceX intends to use on missions to Mars – and so much more – with the previous four, prototypes SN8, SN9, SN10 and SN11 all having suffered failures of various descriptions: SN8 came in too “hot” blowing up as it hit the landing pad; SN9 encountered motor issues that lead to being unable to remain upright so it also crashed into the landing pad; SN10 actually made a touch-down, but issues with one of its motors meant it blew up shortly afterwards; and SN11 exploded prior to landing after encountering issues when re-starting its Raptor motors.

Just before launch, Starship SN15 on the launch stand, venting excess vapours. The structure to the left is a test rig that is being used to simulate the dynamic stresses the forward section of an unladen Starship will face during atmospheric entry. Credit: SpaceX

SN15, however, is a substantially different vehicle to those. As the first of the “next generation” prototypes, it includes multiple updates and improvements throughout – including flying with the very latest iteration of the Raptor motors. Proof of this came in the run-up to the flight, when SN15 completing all its pre-flight tests without a significant issue – unlike the earlier models.

The vehicle lifted-off at 23:24 UTC, rapidly vanishing into low-altitude cloud as it climbed to the expected altitude of 10 kilometres, where it flipped into a horizontal skydiving descent. Just over 6 minutes after lift-off, the roar of the three Raptor engines re-starting reverberated through the clouds before the vehicle re-appeared in a tail-fist descent on  two of the three engines to complete a successful landing.

Starship SN15 on the landing pad, post-flight. The fire around the engine skirt is visible, and the fire suppression system can be seen dousing the area in water. Credit: SpaceX

Following landing, a small fire was visible at the base of the vehicle – the result of excess methane venting, and an issue SpaceX will need to address. However, it was clear that SN15 was safely down on the ground and “safing” procedures could commence.

Despite the atmospheric conditions, the team at NASAspaceflight.com team (this is not an official NASA group) had a number of video cameras placed around the SpaceX facilities at Boca Chica, Texas, and following the flight, they edited the footage from those cameras together to show the lift-off and landing sequences from different angles, some with the audio delay created by the distance of the camera from the launch stand edited out.

Some of these clips bring home the raw power of the Raptor engines – seconds after ignition, the shockwave of sound from the three engines on the Starship starts the camera vibrating – a small demonstration of what is to come when a Super Heavy / Starship combination lifts-off with no fewer than 28 of these engines firing simultaneously.

Following the flight, some pundits were forecasting SN15 could be set to make a second flight, possibly in short order – an idea fuelled be Elon Musk. This seems unlikely, as SpaceX will doubtless want to carefully examine the vehicle to learn all that they can from it prior to attempting to fly it a second time – if, indeed, they do.

All six of SN15’s landing legs suffered severe damage, as shown in this image, possibly the result of lateral loads placed on the vehicle on landing. Credit: SpaceX

As it is, the the landing legs – and possibly the base of the vehicle as well – suffered considerable damage during the “nominal” landing, as the image to the right shows.

Thought to be the result of lateral loading – the vehicle may have skidded sideways on touch-down – the damage is further evidence that SpaceX needs to seriously re-think how landing legs are mounted and deployed.

This is something the company his indicated it would be doing – and images of the proposed Starship Human Landing System (HLS) points to the direction in which they may move – although Musk has also floated the idea of eventually discarding any landing legs, and “catching” returning Starships via a launch tower, a-la his idea for Super Heavy – an idea that will presumably only apply to those Starships intended to operate no further than Earth orbit.

The next vehicle in the fleet that is likely to fly will be SN16, The legs on SN15 are the same as those on the earlier SN8-SN11 vehicles, and they are slated to be replaced by a more robust system,  and the degree of damage they suffered either as a result of a heavier touch-down or a possible lateral load being placed on the legs as a result of the vehicle “sliding” as it touched down. Either way, this damage along means that SN15 is unlikely to re-fly soon (although that doesn’t mean it won’t re-fly at some point).

As it stands, SN16 is now fully stacked and ready for transfer to a launch stand in order to have its Raptor engines fitted in preparation for a flight – this transfer could take place as soon as the coming week.

It is unclear how many more Starship launches will occur in the short-term: SpaceX is attempting to carry out an orbital launch of a Super Heavy Booster and an unladen Starship in July. Given the state of preparations – the company has yet to produce a fully flight-ready Super Heavy (Booster Number 1 has been scrapped, and work appears to have ceased on BN2 and BN2.1, leaving only BN3 under assembly at the moment), plus the orbital launch facilities are still under construction. Thus, unless attention and resources are significantly further shifted to booster development and testing, that July date seems to be highly ambitious.

Ingenuity Says ‘Farewell’ to “Wright Brothers Field”

On  Friday, May 7th, 2021, the Mars helicopter drone Ingenuity completed its 5th of five pre-planned test flights. In doing so, the little 1.8 Kg helicopter both set a new record and commenced a new phase in its mission.

During this flight, Ingenuity initially rose to the “usual” altitude of 5 metres, then said “farewell” to its operational based of “Wright Brother’s Field”, and headed south for a distance of  129 metres before coming to a hover. It this ascended further – climbing to 10 metres to take high-resolution of the area around itself, before descending to a landing in a flight lasting a total of 108 seconds.

The new landing site was selected on the strength of images gathered during the 4th flight for Ingenuity. It lies fairly close to the path the Mars 2020 Perseverance rover will follow as it now commences its science operations in earnest. The initial plans for the rover do not require it to make long-haul drives, but rather investigate the area to the south of the mission’s landing site, and this will allow the Ingenuity team to carry out further flights that can both further test their vehicle and allow them to potentially assist the rover team by scouting possible places of interest for the rover to explore.

Overall, Ingenuity is in fair better shape than had been expected at this point in its flight regime: the solar collectors are working optimally, the battery system is providing more than enough energy to both power the little vehicle and to keep it warm during the harsh Martian nights.

The plan forward is to fly Ingenuity in a manner that does not reduce the pace of Perseverance science operations. We may get a couple more flights in over the next few weeks, and then the agency will evaluate how we’re doing. We have already been able to gather all the flight performance data that we originally came here to collect. Now, this new operations demo gives us an opportunity to further expand our knowledge of flying machines on other planets.

– Bob Balaram, Ingenuity Chief Engineer, NASA/JPL

Prior to the 5th flight, NASA issued an audio recording captured by Perseverance of Ingenuity’s 4th flight – something the mission teams had been hoping to do.

The recording is a fascinating demonstration of the difference in how sound travels on Mars compared to Earth. Given the speed the rotors on Ingenuity spin (2400 rpm), one might expect the helicopter to generate the same high-pitched whine common to radio control helicopters on Earth. However, as the recording reveals, the less-dense atmosphere of Mars reduces the motor sounds from Ingenuity to a low-pitched hum. When listening, also note the doppler shift created by the drone’s motion away from, and back towards, the rover.

Continue reading “Space Sunday: starships, helicopters and rockets”