Space Sunday: Debris, Artemis delays, SpaceX Plans

The International Space Station. Credit: NASA

Anyone  who follows news on space activities will be aware that on November 15th, Russia carried out the test of an anti-satellite(ASAT) missile system that resulted in the destruction of a defunct Soviet-era electronic signals intelligence (ELINT) satellite – and required the crew of the International Space Station (ISS) to move to their respective Earth return vehicles (Soyuz MS-19 and Crew Dragon Endurance) due to risk of being hit by the debris.

To be clear, ASAT systems are not new. The United States and Russia (/the Soviet Union) have between them spent decades developing and testing such systems (the last successful US test was in 2006, with both the USAF and USN having significant ASAT capabilities), and China and India have also demonstrated ASAT systems as deliberate demonstrations of force.

However, the November 15th test by Russia was somewhat different. Occupying a polar orbit at an average altitude of around 470 km, the 2.2 tonne Kosmos 1408 as both a substantial target risking a massive debris cloud, and routinely “passed over” the orbit of the ISS (ave 420 km), putting it at clear risk.  Nor did Russia give any forewarning of the test.

Instead, the US Space Command only became aware of what had happened after they tracked the missile launch all the way to impact – and then started tracking the cloud of debris. This presented no danger to the ISS in its first orbit, but tracking showed it was a very define threat to the station on its 2nd and 3rd orbits, prompting mission controllers to order the ISS crew to start shutting down non-essential operations and sealing-off hatches between the various science modules.

Some 15 minutes before the second pass of the debris field across the station’s orbit, controllers called the station to order the US / European astronauts in the “US section” of the station to secure all remaining hatches to minimise the risk of explosive decompression in the event of a hit, and evacuate to Crew Dragon Endurance both in case an emergency undock was required, and because it presented a significantly smaller target for any stray debris travelling at 28,000 km. The controllers also noted the Russia cosmonauts on the station were engaged in similar actions, and would be retiring to their Soyuz MS-19 vehicle.

In all, the crews were restricted to their Earth return vehicles for somewhere in the region of 3-3.5 hours before it was considered the most significant risk of and impacts had for the most part passed. Even so, it was not until November 17th that all hatches on the ISS were unsealed to allow normal operations to resume throughout all modules. Currently, NASA is still monitoring the situation and may postpone  a spacewalk planned for November 30th as a result of the debris risk.

Ironically, on November 11th, the ISS had to raise its orbit somewhat using the thrust from a docked Progress re-supply vehicle in order to completely remove the risk of debris from 2007 Chinese ASAT weapon test striking it, 14 years after the test.

In these images, Kosmos 1408 can be seen ringed on the left. The image on the right highlights some of the larger clumps and pieces of debris left after the kinetic “kill” by the Russian ASAT weapon. Credit: Numerica and Slingshot Aerospace

Following the test, Russia attempted to play down the risk, stating it posed “no threat” to other orbital vehicle, crewed or uncrewed – a less than accurate statement. Analysis of the debris cloud by both US Space Command and civilian debris tracking organisations reveals much of the cloud will remain a threat for the next several years – if not decades – as the convoluted nature of orbital mechanics and impact velocity gradually increases the cloud’s orbital altitude for a time as it continues to disperse, putting satellites in higher orbits at risk – particularly the likes of the SpaceX Starlink and the OneWeb constellations.

Russia has demonstrated a deliberate disregard for the security, safety, stability, and long-term sustainability of the space domain for all nations. The debris created by Russia’s DA-ASAT will continue to pose a threat to activities in outer space for years to come, putting satellites and space missions at risk, as well as forcing more collision avoidance manoeuvres.

– U.S. Army General James Dickinson, Space Command.

Some 1500 individual pieces of debris from the test are of a trackable size, with potentially tens of thousands more that are too small to be identified. Tim Flohrer, head of the European Space Agency’s (ESA) Space Debris Office noted that the test means that debris avoidance manoeuvres made by satellites in the 400-500 km orbit range may increase by as much as 100% for the next couple of years before the threat is sufficiently dissipated. One of the biggest risks posed by this kind of action is the Kessler Effect (or Kessler Syndrome), wherein debris from one impact causes a second impact, generating more debris, and so setting off a chain reaction.

Given its size and orbit, there is simply no way Russia was unaware of the threat posed by Kosmos 1408 to low-orbit vehicles – particularly crewed vehicles and facilities – if the test was successful. As such, some have seen it as irresponsible due to the impact it could have on general orbital space operations, while others see it as a sign of aggressive intent on Vladimir Putin’s part.

Currently, Russia has not indicated as to whether this was a one-off incident (a previous test in 2020 missed its target), as has been the case in the US, Chinese and Indian tests, or if it could be a part of a wide series of tests. If the latter, then international relationships are liable to be further strained.

NASA OIG: No Moon Landing Before 2026

Following NASA’s indication that the first Artemis lunar laying won’t come “earlier” that 2025, the agency’s own Office of Inspector General (OIG) has thrown a bucket of realism over the entire project, pretty much confirming comments made in this blog concerning vehicle development timelines, whilst also questioning the sustainability of the programme.

Having carried out an extensive audit of the programme, OIG has issued a 73-page report which critiques the current Artemis programme and time frames, although it can only offer suggestions on what might be done, not instigated changes.

Artemis 3 mission (1): the OIG report outlines the first mission to return 2 humans to the Moon – Artemis 3 – as designed by NASA / SpaceX. This uses the SpaceX Starship HLS – which will now be supported by a SpaceX “fuel depot” (a modified Starship hull) sitting in Earth orbit, and frequently refuelled by between 4 and 8 additional Starship vehicles – and the Orion MPCV for transporting a crew of 4 forth and back between Earth and the Moon. Credit: NASA / NASA OIG

It terms of the development of the Human Landing System (HLS), required to get crews to / from the surface of the Moon, the report follows what has been noted in Space Sunday: the 4-year development time frame is simply unrealistic. In particular, the report notes that even in partnerships such as the Commercial Crew Programme, NASA tends to require around 8.5 years to develop a new spaceflight capability – more than double that allocated for HLS (in fact, NASA / SpaceX believed Crew Dragon could be developed and ready for operation in 6 years – it took 10). It also indicates that while a reliance on a single vehicle design / contractors (currently SpaceX) reduces costs, it also places further risk on the entire programme time fame and operations.

Further, the OIG report states that realistically, the first flight of the first Space Launch System (SLS) rocket is unlikely to take place until mid-2022; somewhat later than NASA is still projecting (early 2022). It goes on to point of that given the delays on Artemis 1, it is unlikely that the Artemis 2 mission scheduled for 2023 and which will fly a crew around the Moon and back to Earth in a manner akin to Apollo 8 is unlikely to be ready until mid-2024, simply because NASA plan to re-use elements from the Artemis 1 Orion vehicle in the Artemis 2 Orion, and these will need a comprehensive post-flight examination and refurbishment.

Artemis 3 (2): The report shows the rendezvous with the HLS for the surface mission (2 crew), and leaps ahead to future missions and the establishment of the Lunar Gateway station. What is left unclear is whether the HLS vehicle will be reused (returning it to be refuelled) or simply abandoned (marking it as a waste). Credit: NASA / NASA OIG

Beyond this, the report also raises concerns whether the space suit required for lunar operations – the Exploration Extravehicular Mobility Unit (xEMU) – will actually be ready for operations in 2025, issues in technical development, and in NASA flip-flopping between in-house and commercial contract development of the suit being pointed to as reasons for the delays.

The biggest critique in the report, however, is related to costs. The OIG report notes that at current levels of expenditure, Artemis will cost US $93 billion by 2025/26, with the first four Artemis SLS / Orion launches (Artemis 1 through 4) alone costing US $4.1 each – and this estimate does not include the development of the actual HLS system or the costs to launch / operate it.

NASA OIG estimates the Space Launch system will cost US $4.1 billion per launch for the 1st four flights, with total Artemis development and infrastructure costs (excluding HLS) being some US $93 billion by 2026. Credit: NASA

To reduce these costs, OIG suggests looking to alternate launch vehicles  to deliver crews to lunar orbit, but NASA management has already rejected such ideas and had refuted OIG’s cost analysis and call for most closely accounting for expenditure. However, it has accepted the report’s other concerns; although it will take time to see if this translates into any form of re-assessment of the programme as a whole.

Continue reading “Space Sunday: Debris, Artemis delays, SpaceX Plans”

Space Sunday: throwing things into space; NASA & SpaceX round-ups

A conceptual model of a SpinLaunch coastal launch facility with the vacuum accelerator exposed – the launch vehicle is located at the outer end of the black rotating arm. Credit: SpinLaunch

Up until now, the only means to get payload into space has been through chemical propulsion – rockets. And while they are not entirely efficient, they do work. However, if an American company gets its way, launching small payload into orbit could see the core part of their rocket replaced by a vacuum accelerator. Think of whirling an object around at speed on the end of a piece of string and then releasing it vertically, and you’ll get the picture.

The idea may sound bonkers, but it is precisely what US company SpinLaunch is planning to do.

They propose building a 100-metre diameter vacuum accelerator that, over the course of 90 minutes can accelerate an 11.2 tonne launch system up to a speed of Mach 5 before releasing it to travel along a launch tube and into the air. This velocity should be sufficient to propel the launch vehicle – comprising an aerodynamic aeroshell within with is places a two-stage rocket carrying a 200 Kg payload.

The SpinLaunch payload vehicle, showing the outer dynamic shell, the two-stage rocket vehicle, and a pair of small satellites as the payload. Credit: SpinLaunch

On reaching a altitude matching that of a Falcon 9 first stage, the aeroshell would then split open, releasing the rocket to power itself and its payload on to orbit. Sound this work, it could reduce the cost of placing small payloads into space by around 80%, and allow for multiple launches from a single facility per day, if required.

To prove the idea works, SpinLaunch has constructed a one-third scale version of the accelerator, and on October 22nd, used it – operating at around 20% of rated output – to propel a 3-metre long ballistic projectile “tens of thousand of feet” into the atmosphere. According to SpinLaunch, the test was the first of 30 to take place over the next 6 months before they start work on construction on what they claim will be the first of a number of full-scale launch facilities at various points on the American coast.

That said, there are some significant technical challenges. Spinning at a maximum speed of 450 rpm, the system will subject the launcher and its payload to a peak dynamic load of 10,000 G; that’s a lot for the more sensitive part of the rocket motor to handle. More particularly, when it breaks the vacuum seal at the end of the launch tube, it will be travelling at Mach 5 – and slamming straight into the densest part of the atmosphere, again placing a massive load on it and its payload, as well as generating a lot of frictional heat as a result of its passage through the air. And that’s without considering the challenges in translating the spin of the accelerator into linear motion for the launch vehicle such that it can smoothly and successfully exit the launch tube, etc.

Even so, SpinLaunch appear to be carrying out the right amount of research – even if they are somewhat circumspect in addressing specific technical questions. As such, it will be interesting to see where things lead.

SpaceX Starship Update

With the public phase of the FAA’s Programmatic Environmental Assessment (PEA) of the Starbase facilities at Boca Chica now closed and the agency putting together its final version of the report, SpaceX has been moving ahead with site and vehicle development.

Most notably with the former has been work on erecting the framework of the new Wide Bay facility that could allow work to progress on up to four Super Heavy / Starship vehicles at a time, massively increasing the ability for the company to stack vehicles elements together. At the same time, in the current 2-vehicle High Bay, Booster 5 is nearing stack completion, and work has resumed on Starship 21.

The nose cone section of Starship 21, due to be the second orbit-capable test vehicle, is mounted onto the upper section of the vehicle. Note the thermal protection system already installed on both sections. Credit: BocaChicaGal / NASASpacelfight.com
Booster 5 includes significant differences to Booster 4, which is now sitting on a hard stand at the launch facilities as work continues on the launch platform there. Most notably, elements of the booster are emerging from the fabrication facilities in a completed state than was the case with Booster 4 – which even now, is still awaiting various elements of aerodynamic casing, etc., to protect various parts during its ascent and decent through the atmosphere. Similarly, Starship 21 is showing differences in construction to Starship 20, most notably in having sections fitted with their thermal protection blankets and tiles prior to being stacked together.

At the launch site, work has continued in getting the catching mechanism on the launch support tower properly rigged to the cable system and massive winches that will allow it to move up and down the tower for eventual stacking and catching operations. A short distance away, Booster 4 has started to receive the protective skirting around its base to keep the more sensitive parts of its ring of outer engines safe from the flames and heat of ignition, as well receiving the last of its 29 Raptor engines.

However, the biggest new in recent weeks came with the pre-burn and static fire test of all six Raptor motors on Starship 20. These came almost back-to-back on November 12th, with the pre-burn (a kind of clearing the rocket engines’ throats) coming first and lasting just under a second. Then, around an hour later came a 2-second firing of the vehicles’ 3 sea-level engines and the 3 vacuum rated engines.

As with the last static fire test (with just 3 motors), some of the vehicle’s thermal protection tiles were blown clear, with a good number coming off lower down the vehicle when compared to the 3-engine test. Although brief, the static fire gave a small taste of the amount of noise that will be generated when Booster 4 ignites all 29 of its motors and then sustains their thrust through an actual launch.

Whether or not this launch, which will hopefully carry Starship 20 aloft, will come before the end of the year still hangs in the balance, with a lot riding on the outcome of the FAA’s final version of their PEA.

NASA Updates

Hubble Partially Recovered

On October 25th, the Hubble Space Telescope (HST) entered a “safe” mode, shutting down all science operations, the result of “multiple losses of synchronisation messages” – messages designed to coordinate how the various science instruments on HST receive and transmit data to / from the telescope’s primary computer system. While of concern, and possibly a little more frequent than initially diagnosed, the issue left Hubble in good health and engineers confident science operations could be recovered.

During the week, further tests were carried out that gave NASA the confidence to return the Advanced Camera for Surveys (ACS) to operational status on November 7th. The coming week will see the completion of additional tests with the hope that the more sensitive instruments on the telescope can be returned to operational status.

Artemis 3 Moon Landing Now “No Earlier” Than 2025

In a move that should have surprised no-one interested in space exploration, NASA has pushed back their return to the Moon to at least 2025, citing four reasons: the disagreement with Blue Origin over the contract for the Human Landing System (HLS), delays due to COVID working restrictions in 2020, Congress “failing” to fund HLS development and the Trump Administration placing unrealistic time frames on the programme.

Of the four reasons, the last is perhaps the most accurate: you simply cannot lop 4 years off of a programme and expect it to succeed (simply so you can take the credit as theoretically still be in office), without a commensurate increase in budget to allow NASA to achieve the required goals in the reduced time frame. On the other hand, blaming Congress isn’t entirely honest. In 2019, NASA stated they need $5+ billion for HLS development – but only requested less than $2 billion – hoping they could take money from the infrastructure bill and put into HLS – which Congress refused to allow.

The Artemis 1 mission profile. Credit: NASA – click for full size

As it is, the “no earlier” statement is standard NASA parlance when they do not wish to commit to a specific data as yet, in this instance it is perhaps indicative that Artemis 3 could slip to 2026. A lot is riding on the Artemis 1 mission, which has already slipped to February 2022, being the first flight of the Space Launch System (SLS) rocket critical in getting crews to the Moon. Should this first (uncrewed) flight reveal issues with either SLS or the Orion crew vehicle, then it is likely to seriously impact the entire Artemis timeline.

Similarly, while Elon Musk claims SpaceX will be able to land a crewed Starship HLS vehicle on the Moon in 2023, his time-frames tend to be over-optimistic. Also, there are some major questions around the Starship HLS that have yet to be answered; plus SpaceX are working to NASA’s crew safety requirements, not their own, which can (rightly, given crew safety is at stake) cause additional overheads on a development programme.

Crew Dragon: 4 Down, 4 Up

After uncooperative weather mixed things up, and caused delays, SpaceX Crew Dragon Endeavour has returned to Earth, bringing with it NASA astronauts Shane Kimbrough and Megan McArthur, ESA astronaut Thomas Pesquet and JAXA astronaut Aki Hoshide, who were all just a few hours short of spending 200 days aboard the space station.

Departure and splashdown took place on November 8th, with only the late-opening of one of the 4 main parachutes preventing the return from being perfectly textbook.

A remarkable shot captured by the NASASpaceflight.com team showing Crew Dragon Endeavour forming a bright star as it flies through re-entry high above the SpaceX Starbase at Boca Chica. In the foreground is the launch support tower for Super Heavy / Starship. Credit: NASASpaceflight.com

The departure left a lone US astronaut on the ISS along with two Russian cosmonauts. Mark Vende Hei arrived on the station aboard Soyuz MS-18 in April 2021. In September he and cosmonaut Pyotr Dubrov, who also flew to the station on MS-18, had their stay on the station extended through until March 2022. This means that Vende Hei will take the record for the longest individual space flight by an American – 353 days.

However, on Thursday, November 11th, he was joined by NASA colleagues Raja Chari, Tom Marshburn, and Kayla Barron, who arrived at the ISS along with ESA astronaut Matthias Maurer aboard Crew Dragon Endurance as the Crew 3 mission. They had launched earlier on Thursday, November 11th (Late on Wednesday, November 10th, US time), marking the maiden flight of the third Crew Dragon vehicle to enter service. They will remain aboard the station for 6 months.

Further Push to Retire SOFIA

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), the 2.5 metre telescope flown aboard a converted 747 SP aircraft has been recommended for “termination” by the committee that originally prioritised it.

The astrophysics decadal survey committee, which originally pushed for the airborne observatory in both 1990 (when it was not funded) and 2000 (when it was, although technical issues meant it did not enter service until 2014), now believe it is not worth the annual US $85 million cost of operating it and a “lack” of “scientific productivity”.

SOFIA: the Stratospheric Observatory for Infrared Astronomy, a flying observatory, capable of flying high enough to put it above the majority of atmospheric interference – but again threatened with cancellation. Credit: NASA

The “lack of productivity” references the fact that in its first 6 years, SOFIA has only generated 178 scientific papers that were cited 1,242 times, far less than other, more specialised observatories like the Transiting Exoplanet Survey Satellite (TESS); however, supporters of SOFIA note that the figures ignore the fact that in the last 12 months there has been a 59% increase in SOFIA papers, and the observatory is gaining more use in a variety of roles.

NASA has twice tried to cancel SOFIA, but in 2020 Congress provided sufficient funding for operations to through 2021 and into 2022. Currently, the House has also provided funding for the observatory until the end of 2023, although the Senate has yet to make a determination on funding.

Blue Origin Space Tourist Killed

Glen de Vries, who flew with William Shatner, Chris Boshuizen and Audrey Powers, a Blue Origin vice president on the second passenger-carrying Blue Origin New Shepard sub-orbital flight, was one of two people on a Cessna 172 aircraft that crashed in New Jersey on November 11th.

Glen De Vries aboard New Shepard NS-18 capsule prior to launch

De Vries, a biomedical entrepreneur and self-described “space nerd”, paid an undisclosed sum for the flight, and had been giving talks and presentations on his experience since his return to Earth.

At the time of his death, he had been flying with Thomas Fischer from Essex County Airport in Caldwell, N.J. Both men were well-qualified pilots – Fischer also being a flight instructor – but it is not clear who was flying the aircraft. Emergency services were alerted after the pair failed to arrive at their destination, and the wreckage of the aircraft were subsequently found  in a heavily wooded area near Hampton Township, about 64 kilometres northwest of New York City. At the time of writing, the cause of the crash remains undetermined.

We are devastated to hear of the sudden passing of Glen de Vries.  He brought so much life and energy to the entire Blue Origin team and to his fellow crewmates. His passion for aviation, his charitable work, and his dedication to his craft will long be revered and admired.

Blue Origin statement on the death of Glen de Vries

 

Space Sunday: Mars wake-ups, SpaceX and NASA updates

Looking over Utopia Planitia – a panoramic image captured by the mastcams on China’s Zhurong rover ahead of its period of “hibernation” during the October 2021 conjunction. Credit: CNSA/PEC

The 2021 Earth-Sun-Mars conjunction that saw Earth and Mars on opposite sides of the Sun, interrupting all communications between the two, is now over. This means that the multi- national missions on and around the red planet (America, Europe, the UAE, and China) are switching back from automated activities to more regular operations.

China’s Tiawen 1 orbiter and their solar-powered rover surprised mission controllers by calling home earlier than had been anticipated, to report that they are resuming science operations after their enforced semi-hibernation. The wake-ups come in advance of a change in both missions that will be taking place in early November.

At that time, the Tianwen 1 will switch to a new mission phase, a global mapping and analysis of the Martian surface and subsurface with its suite of seven science instruments. This will reduce the opportunities the orbiter has to act as a communications relay for the rover from once a day to once every few days. To help fills the “gaps” when Tianwen 1 is unable to act as a relay, Europe’s long-running Mars Express orbiter is going to attempt to step up to the plate and relay communications between the rover and Earth – pending the outcome of several communications tests to take place at the start of November.

Another view across Utopia Planitia returned by Zhurong. Credit: CNSA/PEC

Down on Mars, the Zhurong rover had covered 1,182 metres from its landing platform before going into stand-by mode for the solar conjunction. Since waking up, it has resumed its trip south in Utopia Planitia, and is approaching the end of its second 90-sol period of operations, opening the door for a re-assessment of its science targets. Of particular interest to Chinese scientist are a series of “mud volcanoes” and features that may have been formed by movements of subsurface water and ice, where Zhurong’s ground-penetrating radar is expected to provide “fundamentally new perspectives” on potential subsurface Martian water ice, that might be applied to any development of past life on Mars and on the use of sub-surface water by future crewed missions.

For NASA’s Ingenuity helicopter, the end of the conjunction means a resumption of flight operations following tests to run its contra-rotating propellers at high-than-usual RPM to counter the thinning density of the atmosphere in Jezero crater as winter approaches.  This flight was initially scheduled for as early as Saturday, October 23rd, but at the time of writing had yet to be confirmed as having taken place.

Meanwhile, NASA has released a new video showcasing many of the sounds of Mars that have thus far been recorded by Ingenuity’s companion on Mars, the Perseverance rover.

“Percy” carries two off-the-shelf microphones, one mounted on it hull, the other on cover on the camera mounting frame located at the top of its instrument mast. Since the rover’s arrival on Mars, both microphones have been used to record a range of sounds both of Mars and of the rover and Ingenuity operating on the planet.

One of the two microphones mounted on the Mars 2020 Perseverance rover. Located on the moveable camera / imager housing at the top of the rover’s mast, this microphone is somewhat directional in nature. Credit: NASA/JPL

The Mars 2020 mission is the first to Mars to carry microphones that allow us to listen to the planet – but their inclusion is not merely due to idle curiosity. Listening to the sounds of the planet and the rover can reveal a lot, as mission scientist Nina Lanza, one of those behind the microphone project, explains:

First, we can learn about the atmosphere by understanding how sound propagates through it. We can also listen to the sounds of rover analyses on rocks and learn about rock material properties from that. And finally, we can also listen to the sounds the rover makes to help better understand the state of our instruments.

– Nina Lanza, Los Alamos National Laboratory

Analysis of the sound picked-up from Ingenuity’s rotors, for example, has revealed that sound propagates through the Martian atmosphere a lot different to how it had been believed. Changes in the sound the rover makes during driving and other operations could also help give an early indication of possible problems / mechanical issues, making the microphones invaluable.

SpaceX Update

With the public hearings into the Federal Aviation Authority’s draft Programmatic Environmental Assessment (PEA) report on the SpaceX “Starbase” production, test and launch facilities in Boca Chica, Texas, now completed, SpaceX continues to push ahead with preparations for its first Starship  / Super Heavy test flight and other work critical to that, and future Starship / Super Heavy launches.

The tank farm that will store and deliver propellants and other consumables to the launch facilities has seen the last of its vertical tanks and their concrete sheathing installed. At the same time as this work was progress, a set of horizontal tanks, thought to be intermediary tanks that may be used to hold propellants, etc., when detanking boosters between things like static firs tests, arrived for installation at the farm.

The Starbase tank farm showing the new horizontal tanks being installed, with the final sleeve for one of the upright tanks waiting to be lifted into position. Credit: RGV Aerial Photography

The launch facility itself has most recently seen the assembly and installation of the gigantic “Mechazilla”, the extraordinary mechanism that will both lift Super Heavy boosters onto the launch table and stack Starships on top of them (as well as being able to remove both from the launch facilities) and  – eventually – actually “catch” returning boosters and Starships, allowing (in theory) both to be rapidly turned around and re-used whilst eliminating the need for either to have complicated and heavy landing leg systems.

“Mechazilla” will achieve this by travelling up and down the launch support tower on three rails whilst having a “head” that can rotate around three side of the tower, and two huge “chopstick” arms than can open and close around a Super Heavy or Starship vehicle, allowing it to raise or lower them – and eventually catch them as they make a (hopefully) precision return to Earth that brings them down alongside the launch support tower.

The massive system will not be used for the first orbital flight attempt with Booster 4 (currently on the launch table) and Starship 20, but may be used in an attempt to catch Booster 5 (currently under construction as the “next generation” of Super Heavy vehicles)  when that launches in 2022. However, captures of Starship vehicles will not be seen for some time.

A rendering of “Mechazilla” and the QD arm mounted on the Super Heavy / Starship launch support tower at Boca Chica. Credit: Owe BL, with additional annotations

Also during the past week, Starship 20 has completed a series of static fire tests of its Raptor engines – including the first firing of a Raptor vacuum engine integrated into a Starship vehicle, and the first joint firing of a vacuum engine and a sea-level motor. Some of the vehicle’s heat shield titles were blown off during the tests, but otherwise the firings were viewed as successful.

Such is the progress at Boca Chica that Elon Musk has indicated the company will be ready to make that first orbital flight in November, pending regulatory approval. However, it would seem unlikely this would be granted in time for a November launch. The review period for the PEA doesn’t close until November 1st, and the public hearings mentioned above drew strong feedback both in support of, and against SpaceX’s expansion of the Boca Chica facilities, with the latter focused on already noticeable environmental issues.

The static fire test of a Raptor single vacuum engine and a single Raptor sea-level motor, marking the first time the both types of motor, integrated into a Starship, have been test fired. Credit: BocaChicaGal / NASASpaceflight.com

After November 1st, the FAA will require time to complete its report, incorporating all of this feedback and a separate report from the U.S. Fish and Wildlife Service. Even if the report is positive, it still has to be reviewed and digested by the arm of the FAA responsible for granting launch licences. Given that November is something of a “short” month in the US due to the Thanksgiving holiday, it seems doubtful the FAA would complete all this work and grant a licence to SpaceX for Super Heavy / Starship flights by the end of the month.

Continue reading “Space Sunday: Mars wake-ups, SpaceX and NASA updates”

Space Sunday: strange worlds, telescopes and rockets

An image of GW Orionis, a triple star system with a mysterious gap in its surrounding dust rings. UNLV astronomers hypothesize the presence of a massive planet in the gap, which would be the first planet ever discovered to orbit three stars. The left image, provided by the Atacama Large Millimetre/sub-millimetre Array (ALMA) telescope, shows the disc’s ringed structure, with the innermost ring separated from the rest of the disc. The observations in the right image show the shadow of the innermost ring on the rest of the disc. UNLV astronomers used observations from ALMA to construct a comprehensive model of the star system. Credit: ALMA (ESO/NAOJ/NRAO), ESO/Exeter/Kraus et al.

GW Orionis is a triple star system roughly 1,300 light years from Earth sitting within an extended protoplanetary disc that surrounds all three. This disc has been intriguing astronomers for the last decade, and now a team believe they have evident that the disc is home to at least one planet.

Systems of multiple stars bound by gravity are believed to be at least as common within our galaxy as single-star systems (like the Sun), and as such have oft been depicted as the home of worlds with exotic skies (think Star Wars and Tatooine’s iconic binary sunsets). But if correct, this will be the first time we have discovered a planet occupying a circumtriple orbit.

Using observations from the powerful Atacama Large Millimetre/sub-millimetre Array (ALMA) telescope in Chile, a team of astronomers set out to analyse the extended dust ring surrounding the three stars and they orbit their common centre, only to discover that rather than being fairly uniform, the dust ring has a substantial and persistent gap within it.

After running through a wide range of simulations to explain the gap, including trying to find some bizarre form of “gravitational torque” imposed on the disc by the three stars, the team resorted to Occam’s Razor: the simplest explanation is likely the most correct. In this case, and as several of their models demonstrated, the most consistent means to create such a gap in the disc is to plonk at least one large planet, around the size of Jupiter, into it.

It’s really exciting because it makes the theory of planet formation really robust. It could mean that planet formation is much more active than we thought which is pretty cool.

– Jeremy Smallwood, study lead author

In fact, such is the size of the gap, it is conceivable that it might be home to several planets – all of which are far too faint and too distant to be directly observed, but some of which might be Earth-sized solid bodies. This doesn’t mean they might harbour life, but they would make for a fascinating study.

Further work is to be conducted in an attempt to confirm the team’s findings and possibly refine their model of this complex system.

NASA Round-Up

SLS Launch “Likely” to Slip to 2022

As I’ve noted in a number of Space Sunday updates recently, the first flight of NASA’s Space Launch System (SLS) rocket has increasingly looked like it will slip back into 2022, the result of a number of programmatic slippages that, together with restricted working practices introduced by NASA during a good part of 2020 to deal with the SARS-CoV-2 situation, have resulted in most / all of the “spare” time built into the programme to handle unanticipated delays being been eaten up.

Speaking on September 30th, 2021, NASA Associate Administrator Bob Cabana noted that while the agency was not committed to a specific launch date other than “late 2021” for the mission – called “Artemis 1” and intended to fly an uncrewed Orion capsule around the Moon and back in an extended flight – it will now “more than likely” see it slip into early 2022.

An unusual view of the first SLS stack inside NASA’s Vehicle Assembly Building at Kennedy Space Centre. A mass simulator on top of the rocket will soon be replaced by the Orion spacecraft. Credit: NASA/Frank Michaux

The vehicle stack of core stage, upper stage and solid rocket boosters have just completed a series of “modal tests” within the Vehicle Assembly Building (VAB) at the Kennedy Space Centre, Florida. These involved subjecting the stack to a range of vibrations and shaking it to determine the full range of frequencies and vibrations it will experience during launch and ascent in order to programme the flight software and navigation systems so they can be correctly responded to, and an deviance from the “norms” identified and dealt with.

These tests should have been completed in August 2021, paving the way for the Orion capsule and its service module to be mated with, and integrated into, the rocket. This work is now scheduled to commence on October 13th. After that, the entire stack will be rolled out to Launch Complex 39B for a wet dress rehearsal in which the core stage is loaded with propellants in a practice countdown that stops just before ignition of the four main RS-25 engines. Following the test, the rocket will roll back to the VAB for final reviews and pre-launch preparations, before taking a final ride to the pad ready for launch.

Space Telescopes Update

NASA’s James Webb Space Telescope (JWST), the next great space-based telescope, remains on course for a December 18th, 2021 launch. However, the observatory continues to be a source of controversy.

JWST is named for James E. Webb, the second NASA Administrator to be appointed, and the man who saw the agency through the Mercury and Gemini programmes – the latter critical to the Apollo lunar landings – between 1961 and 1968. However, prior to that, he served as Undersecretary of State from 1949–1952, a period which saw the “Lavender Scare”, when many LGBTQ people were driven from roles in government service – a fact that recently (and somewhat belatedly, given the life-time of the programme) has given rise to calls for the telescope to be re-named.

JWST with its primary mirror folded, undergoes a final testing in deploying its boat-like Sun shield earlier in 2021. Nasa has quietly stated that despite objections, the telescope will not be re-named. Credit: NASA

NASA had said it would look into the matter, but this week – without formal announcement or indication of precisely how it did so – leaked word via National Public Radio in the United States that it has conducted “an investigation” and found “no cause” for the telescope to be renamed. The decision and the manner in which NASA has handled it have heaped scorn upon the agency by those who launched the campaign and who signed a petition on the matter forwarded to NASA – many of whom are from the science and astronomy communities.

Elsewhere, the next space-based telescope NASA will launch after JWST – the Nancy Grace Roman Space Telescope (formerly WFIRST) – has received both good and bad news.

The good news is, the telescope successfully passed its critical design review, signalling that all developmental engineering work is now complete, and it can move on to the assembly and testing of the telescope itself.

A next-generation observatory, the NGRST will peer across vast stretches of space and time to survey the infrared universe. Thanks to the mission’s enormous field of view and fast survey speeds, astronomers will be able to observe planets by the thousands, galaxies by the millions, and stars by the billions. As such, it is very much an heir to the Hubble Space Telescope (HST) on which parts of it are based, and entirely complimentary to the work of JWST.

An artist’s rendering of the Nancy Grace Roman Space Telescope in space. Credit: NASA

The bad news is that the telescope – which the Trump Administration repeatedly tried to cancel despite its real-time low cost thanks to its use of “spare” HST elements – has now genuinely started to incur cost overruns. These are the direct result of the SARS-CoV-2 pandemic in 2020 as a result of the restrictive working practices NASA had to implement to protect their employees, together with disruption of critical supply chains also as a result of the pandemic. These have already caused a US $400 million increase in the telescope’s estimate US $3.9 billion cost, and further increases are now expected – although there is sufficient leeway in the NASA 2021-2022 budget to meet the added costs and the estimated 7-month delay so far incurred in the telescope’s development.

Continue reading “Space Sunday: strange worlds, telescopes and rockets”

Space Sunday: SpaceX, Virgin, Blue Origin and HST updates

SpaceX: the orbital launch facilities under construction at Starbase, Boca Chica, Texas, as the 7th section of the launch support tower is hoisted into place. Credit: Bocachicagal / NASASpaceFlight.com

SpaceX are driving ahead with preparations for their first Starship / Super Heavy orbital flight – although whether the company will achieve the goal of making the launch prior to the end of July 2021, as recently re-stated by company president and COO Gwynne Shotwell – would seem unlikely at this point in time.

Following the successful flight of Starship SN15 on May 5th, 2021, the company has taken a step back from medium and high-altitude test flights to focus on tasks that are core to that first orbital attempt, with the on-going construction of the orbital launch facilities and fabrication of both Starship prototype SN20 that will attempt the flight, and the Super Heavy booster that will lift it into the sky.

However, as recently announced by SpaceX CEO Elon Musk, that booster will not be the unit everyone had been watching so keenly through its assembly at the company’s Starbase facilities at Boca Chica, Texas.  That honour will now go to Booster 4, still under construction.

A comparison between the sea-level Raptor engine (l) and the vacuum Raptor with its much larger exhaust bell (r). Three of each will be used to power orbital Starships, and 12 sea-level and sixteen vacuum motors will initially power Super Heavy boosters, rising to 16 of each as booster development progresses. Credit: SpaceX

Instead, Booster 3 (originally called BN3 for “Booster Number 3”, then re-designated in June as BN2 before undergoing a further change to its current designation) is to be used for further ground tests. These tests will, according to Musk, directly impact the internal design of Booster 4; if so, this would likely make any orbital flight attempt within the next month even more unlikely.

As I reported in Space Sunday: Selfies, Missions, Budgets and Rockets, a smaller section of a Super Heavy, designated BN2.1 has already completed cryogenic and hydraulic pressure tests designed to test thrust puck / tank integrity, and the tests with Booster 3 will expand on these. To this end, following the BN2.1 test mount was relocated to Orbital Test Stand A, one of the two launch stands previously used for Starship flight tests. Then, on July 1st, and with the rig in place and ready to receive it, Booster 3 was rolled out of the fabrication facility and driven the two(ish) kilometres down the road to the launch area and then lifted onto the stand.

In the coming weeks, the booster – currently without any Raptor engines mounted on it – will likely be put through various proof tests using both liquid nitrogen and actual fuel loads to check the overall structural integrity of the entire design. Some have suggested that these tests might see the booster fitted with a group of sea-level Raptor engines (the test stand doesn’t allow for mounting the vacuum engines) for a static fire test. However, if Booster 4 is to be substantially different to Booster 3, then such a test could be of questionable value; thus, others have speculated that Booster 3 might actually be pressure tested to destruction using liquid nitrogen, as was seen during early tank tests with partial builds of the Starship.

The 65-metre tall Booster 3 test article being moved from the Boca Chica fabrication facilities to the test and launch facilities, July 1st, 2021. Credit: NASASpaceFlight.com

In the meantime, the orbital launch stand is under construction in two parts: the base of the stand and the massive launch table that will sit on top of it to actually mount and hold a Super Heavy booster and Starship prior to launch. Alongside the launch stand base is the massive support tower that has been rising section-by-section into the Texas sky, and which is now awaiting the hoisting and fitting of its uppermost section, which will eventually mount the crane that will lift and stack boosters and Starships onto the launch table.

Whilst at an advanced stage of construction, the tower still needs a lot of fitting-out with the infrastructure required to support a launch. Similarly, construction on the staging areas where boosters and Starships moved down to the launch facilities from the fabrication and assembly area will be placed prior to being stacked for a launch, has only just started – although this could be completed in relatively short order.

Just across from these staging areas, the fuel tank farm comprising 7 tanks that will house the fuel stocks need to fuel both Starship and booster ahead of a launch and a large water tank that will provide the massive volume of water required for the sound suppression system, also has some way to go before all 7 fuel tanks are in place and covered by their insulation sleeves, and it is not clear how much of the supporting infrastructure needed to deliver fuel and water to the launch pad has actually been implemented.

SpaceX orbital launch facilities construction: left – The base of the launch support tower with the angled ring of the launch table support structure just in front of it. Centre: the square foundations of the staging platforms for Super Heavy (uppermost) and Starship. Lower right: the fuel tank farm – the metal tanks are for housing liquid oxygen and liquid methane, the grey tank behind them is a fuel tank sheathed by an insulation tank designed to contain liquid nitrogen to help keep the fuel stocks in a liquid state, while the large grey tank to the left is the water tank for the launch sound suppression system. Credit: RGV Aerial Photography

One aspect of the facilities starting to come on-stream is the generator farm that will be used to produce liquid oxygen for launches directly from the air around them. With five of the 10 massive generators now commissioned, this farm will eventually power a process called air liquefaction, a process that splits air into nitrogen, argon and oxygen, cooling them to liquid states. The liquid oxygen will then be pumped to the nearby tank farm to be used to fuel Starships and Super Heavy boosters, and the liquid nitrogen will be used to cool the liquid oxygen and liquid a methane  stored with the tank farm and keep them in their liquid state.

Virgin and Blue Origin Updates

Virgin Orbit has completed its first commercial air-launch, delivering a payload of seven small satellites successfully to orbit. Entitled “Tubular Bells Part One”, in recognition of the 1973 album by Sir Mike Oldfield and which arguably launched what would become the Virgin empire.

The company’s 747 carrier aircraft Cosmic Girl took off from Mojave Air and Space Port at 13:50 UTC on Wednesday, June 30th to climb to an altitude of 50km, heading out over the Pacific Ocean. On reaching a point some 80km south of the Channel Islands, the aircraft released the LauncherOne rocket, allowing it to drop clear before igniting its motor and accelerating to orbit.

Virgin Orbit’s Cosmic Girl with the Tubular Bells Part One LauncherOne rocket mounted under its wing, being prepared for flight in the early hours of June 30th Credit: Virgin Orbit

On board the rocket was a combined payload of four R&D CubeSats for the US Department of Defence, two optical satellites for SatRevolution, and the Royal Netherlands Air Force’s first military satellite, all of which were successfully deployed from the rocket some two hours after Cosmic Girl took off.

The wonderful thing about Virgin Orbit is that it literally can help transform people’s lives around the world. It can put satellites up to monitor illegal fishing, check on climate change, check on the ozone layer, connect the three billion people who are not connected. And the fact we can do it from anywhere in the world … to any orbit, is unique.

– Sir Richard Branson

Following that success, on July 1st, Virgin Galactic announced that July 11th will see the first test flight for SpaceShipTwo since the company was granted an update to the vehicle’s FAA licence allowing them to start flying fare-paying passengers later in the year, a flight will see the vehicle fly with both crew and four passengers – three members of the Virgin Galactic team, and company founder Sir Richard Branson.

Whilst not carrying fare-paying passengers, as will be the case with the upcoming Blue Origin sub-orbital flight on July 20th, the Virgin Galactic flight will mean that Branson will beat Blue Origin’s Jeff Bezos in making a sub-orbital flight and gaining his astronaut wings.

Once lifted to around 15-16 km attitude by its mothership, the MSS Eve, the VSS Unity will be released to power itself up to around 80-85 km altitude in a 10-minute flight during which those on board will experience between 2 and 3 minutes of micro-gravity before the vehicle makes an unpowered return to Earth to land like a conventional aircraft.

The crew of the July 11th Virgin Galactic test flight. From left: Chief Pilot Dave Mackay, Lead Operations Engineer Colin Bennett, Chief Astronaut Instructor Beth Moses, Founder of Virgin Galactic Richard Branson, Vice President of Government Affairs and Research Operations Sirisha Bandla and pilot Michael Masucci. Credit: Virgin Galactic

This 10-minute element of the flight by VSS Unity mirrors the overall flight time for the Blue Origin New Shepherd booster and capsule that will lift Bezos, his brother and an unnamed passenger who paid US $28 million to be the first fare-paying passenger flown by the company.

Also aboard that flight, which will take place on July 20th, will be a very special guest passenger: one other than “Wally” Funk.

Born in 1939, as Mary Wallace Funk, “Wally” is a remarkable woman. Obtaining her pilot’s licence when just 20 years of age, she was the first female civilian flight instructor training military pilots, the first female Federal Aviation Agency inspector, and the first female air safety investigator for the National Transportation Safety Board. Most particularly in this instance, she was one of the Mercury 13 group – more formally, the “Women in Space” Programme founded in 1960 by William Randolph Lovelace, a former NASA flight surgeon.

1995: seven of the “Mercury 13” were guests of Elieen Collins, the first woman to pilot a space shuttle, at the launch of that mission, STS-63. From left to right: Gene Nora Jessen, Wally Funk, Jerrie Cobb, Jerri Truhill, Sarah Rutley, Myrtle Cagle and Bernice Steadman. Credit: NASA via AP

Whilst lacking official government funding, but supported by NASA, the programme saw 25 women between the ages of 25 and 40 including Funk – despite the fact she was below the minimum age for consideration) – invited to take part in astronaut training. Of the 19 who enrolled, 13 graduated, with Funk the third best in the group and actually out-performing John Glenn, the first American to orbit the Earth, in some of the tests.

Although the term “Mercury 13” is often credited with being applied by the press at the time, the 13 women were actually known as FLATS – First Lady Astronaut Trainees (FLATS), although none actually ever flew into space. The term “Mercury 13” itself was first used by Hollywood producer James Cross in 1995 when comparing the 13 to the original Mercury Seven.

Wally Funk qualified as a pilot at the age of 20. She went on to become a civilian instructor of US military pilots, and gained more that 1,000 hours as an instructor on a range of aircraft. She earned her Airline Transport Rating in 1968, and became the first female FAA field examiner in 1971. Credit: unknown, via Blue Origin

Although she never flew into space as a part of any US programme, Funk has remained highly supportive of NASA and actually purchased a ticket to fly with Virgin Galactic when they start fare-paying flights later this year. However, in what might well have been a deliberate poke at Branson and his company, Bezos invited Funk to join his July 20th flight as his “honoured guest”.

“I’ll love every second of it. Whoooo! Ha-ha. I can hardly wait! Nothing has ever gotten in my way. They said, ‘Well, you’re a girl, you can’t do that.’ I said, ‘Guess what, doesn’t matter what you are. You can still do it if you want to do it and I like to do things that nobody has ever done.

– Wally Funk

While she will not orbit the Earth, in making the trip aboard New Shepherd, Funk will nevertheless become the oldest person to date to fly in space beating – again – John Glenn, who was 77 when he flew on the shuttle Discovery in 1988.

Hubble Update: NASA taking a “Careful and Deliberate” Approach

NASA is taking a slow and deliberate approach to restoring science operations on the Hubble Space Telescope, which has been out of service since mid-June when a payload computer malfunctioned.

As I noted in my previous Space Sunday update, attempts to find the source of the issue were shifting away from the payload computer itself and towards two other components in the telescope – the Command Unit/Science Data Formatter (CU/SDF) and the primary power regulator circuits.

Further testing of both units during the week has led NASA to the decision to switch either or both the CU/SDF and the power regulator to their back-ups – but they will do so slowly. over the course of the next week or so.

The first part of this work will be a review of the procedures for making the switch-overs will be reviewed to determine if any updates need to be made in respect of the telescope’s age and changes it has seen over the years. Once reviewed, the procedures will then be tested on a “high-fidelity simulator” to ensure their suitability for active use. Then as a final step, a decision will be made one switching over one or both of the CU/SDF and power regulators, and the procedures implemented.

I have given the team very clear direction that returning Hubble safely to service and not unintentionally doing any harm to the system is the highest priority, not speed. They’re being very deliberate in their analysis and their choices of what they do. There’s two layers of review of all the procedures they come up [with]. Although we’re all impatient to have Hubble back taking science, the highest priority is to be very careful and deliberate and not rush.

– Paul Hertz, director of NASA’s astrophysics division

Space Sunday: selfies, missions, budgets and rockets

Zhurong and its lander. Credit: CNSA

You would be forgiven for thinking the banner image for this update is an artist’s impression of China’s Zhurong rover and its lander on Mars. But you’d be wrong – the image really was taken on Mars.

It is part of a batch of images the China National Space Administration (CNSA) have released charting the recent activities of their rover on the Red planet, and they are as remarkable as anything seen with the US rover vehicles, with others showing panoramic views around the rover and shots of its lander vehicle.

The Zhurong lander, part of China’s Tianwen-1 Mars mission., as seen from the rover vehicle at a distance of some 6 metres. Credit: CNSA

Captured on June 8th, the image of rover and lander was taken by a remote camera originally stowed in Zhurong’s belly, and which had been safely deposited on the surface of Mars some 10 metres from the lander, allowing mission control to remote capture the unique sight of a rover and its lander side-by-side.

Zhurong has now completed the first third of its initial 90-day mission on Mars, and is well into its survey of its surroundings within Utopia Planitia. In addition to the high-resolution cameras, used to produce these images, the rover is fitted with a subsurface radar instrument, a multi-spectral camera and surface composition detector, a magnetic field detector and a weather monitor.

A 360 panorama of the Zhurong landing site, captured by the Chinese rover prior to is descent from the back of its lander. Credit; CNSA

Ahead of the images released by CNSA, NASA released their own image of the Chinese rover and lander as seen by the HiRISE camera on the Mars Reconnaissance Orbiter  from an altitude of around 400 km.

Taken on June 6th, three weeks after Zhurong touched-down, the image clearly shows green-tinted lander (a result of the image processing, not the actual colour of the lander) sitting between two areas of surface material discoloured by the thrust of the lander’s outward-angled descent and landing motors. Zhurong itself can be seen a short way south of the lander, within the eastern arc of discolouration.

Captured by the HiRISE imager on NASA’s Mars Reconnaissance Orbiter on June 6th, this image shows the Zhurong lander surrounded by surface material discoloured by the lander’s rocket motors, with the rover sitting just to the south. Credit: NASA/JPL

And turning to NASA’s surface mission on Mars (specifically Mars 2020): on June 8th, the Ingenuity helicopter completed a 7th flight, this one error-free.

Lifting off at around 12:34 local mean solar time (roughly 15:54 UTC on Earth) proceeded south during the 63-second flight, covering a distance of around 106 metres before touching down at a new location.

Ingenuity captured this image of its shadow passing over the surface of Mars on June 8th, 2021 during its 7th flight. Credit: NASA/JPL

In difference to the 6th flight on May 22nd, which saw the helicopter encounter some anomalies (see: Space Sunday: Martian Clouds, Lunar missions and a Space Station), the seventh flight was completed with incident, once again raising confidence that the helicopter will be able to continue flying several more times.

Overlaid onto an image be NASA’s Mars Reconnaissance Orbiter are the routes for the first and second science sorties to be made by Perseverance. Credit: NASA/JPL

Now regarded as fully commissioned, Perseverance has put its duties as caretaker-watcher for Ingenuity largely behind it, as is now driving south and away its landing zone on its way to study a 4 square kilometre of crater floor, where it will examine two very different geological units and collect samples for analysis and for storage and possible return to Earth as part of a future mission.

“Crater Floor Fractured Rough” is a region of ancient bedrock, whilst “Séítah” (Navajo for “amidst the sand”) presents a mix of bedrock overlaid with more recent ridges and also sand dunes. The rover will perform a gentle loop through these areas, visiting “Crater Floor Fractured Rough” first then travelling through the ridgelands and then back up through “Séítah S” and Séítah N”, before heading for its next target, an area dubbed “Three Fours”.

ESA Looks to Venus and the Outer Planets

The European Space Agency has announced its goals for the next several decades in terms of robotic exploration of the solar system and cosmic science.

Announce on June 10th, the EnVision mission will carry a suite of spectrometers, sounders and a radar to study the interior, surface and atmosphere of Venus. The target launch period is May 2032, with the vehicle arriving in orbit around Venus in August 2033, where it will use the planet’s upper atmosphere to aerobrake into its final science orbit over a 3-year period, before commencing its four-year primary mission. It  is expected to cost around 500 million Euros.

ESA plans to further extend our knowledge and understanding of Venus with the EnVision mission, due to launch in 2032. Credit: ESA

While there has been no coordination between NASA and ESA in terms of mission selection, EnVision’s science mission is highly complementary to the two NASA missions – VERITAS and DAVINCI+ – also recently announced, covering aspects of Venus science they do not. Further, ESA will be flying science packages on VERITAS, and NASA will be providing the synthetic aperture radar for EnVision.

EnVision is the fifth M-class mission ESA has selected as part of the Cosmic Vision program. The first, Solar Orbiter, was launched in February 2020, and three others are in development: Euclid, a mission to map dark matter and dark energy to launch in 2022; Plato, an exoplanet search mission launching in 2026; and Ariel, an exoplanet characterisation mission launching in 2029.

In addition To EnVision, ESA intends to spend the next several decades developing  missions to follow after the Jupiter Icy Moons Explorer, that will help assess the habitability of the icy moons in the outer solar system and seek any biosignatures they may have. At the same time ESA intends to support further science endeavours aimed at increasing our understanding of our own galaxy and the likely state and development of the early universe.

Continue reading “Space Sunday: selfies, missions, budgets and rockets”