
Once regarded as a planet that may harbour life, Venus – as we know it today – is a hellish place. Cursed with a runaway greenhouse effect, the surface temperatures (averaging 735 Kelvin or 462°C / 863°F) are hot enough to melt lead and mark it was the hottest planetary body in the solar system. The atmosphere is both a toxic cauldron so dense that it exerts a surface pressure 92 times greater than our own – the equivalent of being 900 m (3,000 ft) under water on Earth.
Venus is also unusual in other ways: it has a retrograde rotation (it spins on its axis in the opposite direction to Earth and most of the other planets), and it takes 243 terrestrial days to complete one rotation but only takes 224.7 days to complete an orbit of the Sun, making a “day” on Venus longer than a year.
Despite its hostile conditions, it has long been believed that Venus was at one time in its ancient past a far more hospitable world, potentially warm a wet, and spinning a lot faster on its axis (quite possibly in the same direction as the Earth spins). However, at some point – so the accepted theories go – Venus experienced a massive impact, one sufficient enough to slow – and even reverse – its rotation and which also left it the broiling, hostile world we know today.

However, a new study involving the University of Bangor, Wales, the University of Washington and NASA, suggests not only did Venus once had a liquid water ocean, but that ocean may have actually been the catalyst that brought about the planet’s dramatic change.
To put it simply, tides act as a brake on a planet’s rotation because of the friction generated between tidal currents and the sea floor. On Earth, this results in the length of a day being shortened by about 20 seconds every million years. Given this. the team responsible for the study investigated how such interactions might impact Venus. Using a numerical tidal model, the accepted belief that Venus once had a world-girdling ocean, and applying it to planetary rotational periods ranging from 243 to 64 sidereal Earth days, they calculated the tidal dissipation rates and associated tidal torque that would result from each variation in ocean depth and rotational period. Their work revealed that ocean tides on Venus would likely have been enough to slow the planet’s rotation it down by up to 72 terrestrial days every million years.
This might not sound a lot, but of the course of around 10-50 million years, it would have been enough to slow Venus’s rotation and bring it to how we see it today. In turn, this slowing of rotation would have accelerated the evaporation of an ocean waters on the sunward facing side of the planet, both increasing the atmospheric density and trapping more heat within the atmosphere, accelerating the planet’s greenhouse effect, in turn increasing the rate of ocean evaporation in what would have been a closed cycle. Add to that the planet’s known volcanism, and the team estimate that it would have taken around 100-120 million years to turn Venus into the planet we see today.
This work shows how important tides can be to remodel the rotation of a planet, even if that ocean only exists for a few 100 million years, and how key the tides are for making a planet habitable.
– study co-lead Dr. Mattias Green, University of Bangor
The study findings have potentially important implications for the study of extra solar planets, where many “Venus-like” worlds have already been found. From this work, astronomers have a model that could be applied to exoplanets located near the inner edge of their circumstellar habitable zones, helping to determine whether they might have at some point potentially have had liquid water oceans, and how those oceans may have affected their development.
Fly Your Name to Mars
Mid July through August 2020 will see NASA’s next rover mission launched to Mars, and as with a lot of their recent exploratory missions, NASA is giving members of the public the opportunity to have their names flown with the vehicle.
Between now and September 30th, 2019, NASA is inviting one million members of the public to submit their names and postal codes to Send Your Name (Mars 2020). These names will then be laser-etched onto a little chip roughly the size of a penny that will be mounted on the rover and carried to Mars. In return, successful applicants obtain a “boarding pass” similar to the one shown below, indicating their name will be flown on the mission.

The Mars 2020 rover is based on the same chassis and power system as used by the Mars Science Laboratory Curiosity rover. It will also use the same type of landing system, featuring a rocket-powered “skycrane” that will hover a few metres above the surface of Mars and then winch the rover down to the surface. However – and for the first time in the history of planetary exploration – Mars 2020 will have the ability to accurately re-target its landing point prior to committing to lower the rover, thus allowing it to avoid last-minute obstructions that might otherwise damage the rover or put it at risk.
Core to this capability is a instrument called the Lander Vision System (LVS), which has been undergoing tests in California’s Death Valley attached to a helicopter. LVS is designed to gather data on the terrain the lander is descending towards, analyse it to identify potential hazards and then feed the information to a guidance system called Terrain-Relative Navigation (TRN), which can then steer the landing system away from hazards, allowing the skycrane to winch the rover to the ground in a (hopefully) a safe location.

Mars 2020 is due to be launched between July 17th and August 5th 2020 to arrive on Mars at Jezero Crater on February 18th, 2021.
Continue reading “Space Sunday: Venus, Pluto, and a mini round-up”













