
NASA is continuing to get the Mars 2020 rover Perseverance ready to commence science operations, with the past week has seen a number of milestones achieved – including the rover’s first drive on the surface of Mars.
Immediately following the post-landing check-outs, mission controllers were focused on swapping out the Entry Descent and Landing (EDL) software on the rover for the software that will be central to its surface operations. This work was completed on Friday, February 26th – Sol 8 on Mars for the rover. This paved the way for this week’s check-outs of systems.
On Sunday, February 28th, commands were sent to deploy the Mars Environmental Dynamics Analyser (MEDA). Located on the rover’s mast, this comprises two extensible booms and forms the rover’s “weather station”, a set of sensors that measure temperature, wind speed and direction, pressure, relative humidity, radiation, and dust particle size and shape, provided by Spain’s Centro de Astrobiología.

Following this, on Tuesday, March 12th (Sol 12 for the rover), the robot arm was put through its initial paces.
As with Curiosity, the robot arm on Perseverance forms a key part of its science and physical capabilities. At over two metres in length, it has 5 degrees freedom of movement, and ends with a 45 kg “turret” that carries numerous tools and instruments, including:
- The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC), an ultraviolet Raman spectrometer that uses fine-scale imaging and an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds.
- WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) – a camera designed to perform a wide range of roles, from working in combination with SHERLOC, to providing the ability to check around and under the rover for engineering purposes.
- The Planetary Instrument for X-Ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer designed to investigate the elemental composition of Martian surface materials.
- The rover’s drill and sample gathering system.
For its first use, the arm was extended from its cradle and raised to the vertical before being “wriggled” back and forth to confirm instrument stability. It was then lowered and put through a set of rotational moves (as was the instrument turret), before being returned to its cradle and the turret again rotated in two directions.

Tuesday’s first test of the robotic arm was a big moment for us. That’s the main tool the science team will use to do close-up examination of the geologic features of Jezero Crater, and then we’ll drill and sample the ones they find the most interesting. When we got confirmation of the robotic arm flexing its muscles, including images of it working beautifully after its long trip to Mars – well, it made my day.
– Robert Hogg, Mars 2020 rover deputy mission manager
A further significant milestone was marked on March 4th (Sol 14), when the rover made that first drive. While covering less then eight metres, it was enough for the rover to perform a few basic manoeuvres intended to allow the engineering team to check-out the rover’s basic mobility capabilities.

Following a set of initial steering turns of the forward wheels (shown above), the rover drove forward 4 metres before turning 150o whilst standing still. It then reversed a further 2.5 metres to park in a new location. While comparatively short and taking 33 minutes to complete, this first drive is a small taste of what is to come. With its improved navigation and auto-pilot capabilities, Perseverance is capable of covering up to 200 metres in a single day once surface operations commence.
This was our first chance to ‘kick the tires’ and take Perseverance out for a spin. The rover’s six-wheel drive responded superbly. We are now confident our drive system is good to go, capable of taking us wherever the science leads us over the next two years.
– Anais Zarifian, Mars 2020 rover mobility test bed engineer

The new parking position gave the mission team an opportunity to look back at the rover’s landing point and examine the surface and how the skycrane motors dispersed dust and regolith. The view also gave the mission team the opportunity to formally name the landing site, as has been done with past missions.
Using a press conference on the rover’s progress held on Friday, March 5th, members of the Mars 2020 mission team announced the landing site will be known as the “Octavia E. Butler Landing”, named in honour of the African-American science fiction writer, who passed away in 2006.
Whilst not officially recognised by the International Astronomical Union, the body responsible for all official solar system designations, the name reflects the Jet Propulsion Laboratory’s practice of naming key sites for missions after noted scientists and science fiction writers (for example, the Curiosity rover landing site was dubbed “Bradbury Landing” after science fiction author Ray Bradbury, while the mountain it is exploring was dubbed “Mount Sharp” after American geologist Robert P. Sharp).
Depending on how reporting on the initial phases of the rover’s mission is handled by NASA, I’ll continue to update on Perseverance alongside other Mars missions either as a part of Space Sunday, or within a new series I’m debating running. In the meantime, the video below combines views of Jezero Crater captured by the rover’s Mastcam and NavCam systems during the rover’s first week of operations.
Continue reading “Space Sunday: Perseverance, SN10, and a little bit more”