
Sunday, October 16th, 2016, marked the first in two important dates during the month for the European Space Agency. It was at 14:42 UT that the Schiaparelli Entry, Descent and Landing Demonstrator Module (EDM) separated from its parent orbiter, the Mars Trace Gas Orbiter (TGO) as the two entered the final three days of their approach to Mars.
TGO / Schiaparelli form the first part of the European Space Agency’s ExoMars mission, which represents an ambitious expansion of European studies of Mars by placing TGO in orbit around Mars where it will study the atmosphere, then following it in 2020 with a rover mission, for which Schiaparelli is a pre-cursor.
It’s been a mission a long time in the making – in the case of the still-to-fly rover mission, more than a decade has already passed since its inception, was a certain amount of the delay due to NASA. Originally, both TGO and rover were to launch aboard Russian vehicles, but a 2009 agreement with the US space agency resulted in a comprehensive re-design of both missions, which were to fly aboard / as part of US vehicles / missions (the TGO science was to have flown on NASA’s Mars Science Orbiter (MSO) mission, for example). However, NASA unilaterally cancelled the agreement at the start of 2012 due to cost overruns with the James Webb Space Telescope, forcing a further complete redesign of both TGO and rover vehicle.

October 16th was an important milestone for the mission, as it saw TGO release the Schiaparelli demonstrator in what was a textbook operation, watched via telemetry at mission control, with a nine-and-a-half-minute time delay separating events from receipt of data. It was a single line of that data that indicated separation had been successful.
Schiaparelli will not proceed ahead of TGO, their paths slowly diverging, until Wednesday, October 19th, when TGO will enter its preliminary orbit around Mars. Over the course of the next year, that orbit will be further and further refined until the vehicle is correctly positioned to commence its 5-year primary mission. For this, TGO will perform detailed, remote observations of the Martian atmosphere, searching for evidence of gases which may be possible biological importance, such as methane and its degradation products. At the same time, TGO will continue to image Mars, and act as a communications for both Schiaparelli and for the 2020 rover vehicle.
At the same time as TGO enters that preliminary orbit, Schiaparelli will commence a much more hazardous journey to the surface of Mars. This will commence with the 2.4 metre (8ft) diameter EDM slamming into the Martian atmosphere at 21,000 km/h (13,000 mph; 5.8 km/s / 3.6 mi/s), where it will use a heat shield and atmospheric friction to rapidly decelerate.
Once through the upper reaches of the Martian atmosphere, the EDM will jettison the heat shield and deploy a parachute system from its protective aeroshell. This will carry it down to an altitude of several dozen metres above the surface, before the lander drops clear of the aeroshell. Rocket motors on the lander will then fire, slowly bringing it to around 2 metres (6.6ft) above the ground, where they’ll shut down, allowing Schiaparelli to drop to the surface, the impact cushioned by a crushable structure designed to deform and absorb the final touchdown impact. The entry, descent and landing should take around 6 minutes.
Throughout the descent, Schiaparelli will record a number of atmospheric parameters and lander performance, with a camera system recording its descent. Once on the surface, it will measure the wind speed and direction, humidity, pressure and surface temperature, and determine the transparency of the atmosphere. It will also make the first measurements of electrical fields at the planet’s surface.
The EDM will only operate for a short time on the surface of Mars – between 2 and 8 sols (Martian days) is the estimate. Its small size, coupled with the limited amount of space within it, means it is not equipped with solar arrays to re-charge its battery systems. However, the core aim of the mission is to better characterise the Martian atmosphere and test critical descent and landing systems needed for future missions, rather than carrying out long-term surface studies.

The planned landing point for Schiaparelli is Meridiani Planum, the region NASA’s Opportunity rover has been exploring since 2004. The EDM will be arriving during the dust storm season, which will provide a unique chance to characterize a dust-loaded atmosphere during entry and descent, and to conduct surface measurements associated with a dust-rich environment.
I’ll have more on TGO and Schiaparelli in my next Space Sunday update.
Continue reading “Space Sunday: landings, launches and tiny worlds”