Gem Preiz: a retrospective in Second Life

Gem Preiz Retrospective: Complexity (2013)
Gem Preiz Retrospective: Complexity (2013)

Open now through June at LEA 26 is a retrospective of Gem Preiz’s entire catalogue of fractal art installations in Second Life. For anyone who is familiar with his work, they offer a visual treat in spades; while for those who have yet to encounter Gem’s stunning canvases of intricate, fractal-generated images, all of which combine technology with wonderfully organic forms, even when depicting artificial structures, there has never been a better opportunity to be immersed in his work.

The installations are reached via individual teleports, arranged in chronological, left-to-right order as the visitor looks at them, each with its original info card giver located on the wall above the teleport disc. This allows visitors to not only visit each of Gem’s past installation in turn, but also to witness his growing confidence in using fractal generators to not only create scenes, but to weave narratives through his work, offering insight into his own growth within his medium.

Gem Preiz Retrospective: Heaven and Hell (2012)
Gem Preiz Retrospective: Heaven and Hell (2012)

I have covered Gem’s work extensively in this blog (all of my reviews can be found by following this tag, or view the menu: Second Life > Reviews > Art Reviews > Art in SL > Gem Preiz), and so was personally delighted to see his two earliest installations, Heaven and Hell and Complexity are included in the retrospective, as I’ve not previously had the opportunity to view them.

Heaven and Hell, Gem’s first ever exhibition in Second Life, dates from 2012 and takes as its lead a quote from French artist Georges Braque, “Art is made to disturb, science reassures.”

“It seemed to me funny and interesting to evoke the concepts of hell and paradise, which are by definition irrational, by means of one of the most accomplished domains of the science: mathematics and fractals.” Gem says of the installation.  inviting people to cross the Styx and enter the devil’s domain before being reborn in paradise.

Gem Preiz Retrospective: Polychronies (2014)
Gem Preiz Retrospective: Polychronies (2014)

Complexity, first displayed in October 2013 at Timamoon Arts, is an intriguing voyage of creation and growth, physically and in terms of knowledge, reflected in a quote, “The detailed knowledge of the world helps us to better understand it, but we never understand it better than when we forget its details.”

It takes us through fifteen images, each an ever more complex outgrowth of the last, carrying us from a single fractal at the centre of a blue realm, to the most intricate and complex shapes which form their own universe, expanding ever outwards until at last we come to … what appears to be a single fractal floating in a blue realm. A perfect summation of the quote.

Gem Preiz Retrospective: Metropolis (2015)
Gem Preiz Retrospective: Metropolis (2015)

From Complexity, one can travel onwards through Cathedral Dreamer – my first exposure to Gem’s art,  to Polychronies, which still stands as one of my favourite installations by Gem,  and onwards through to Metropolis, with his most recent joint work: Heritage: Vestiges and Wrecks, also on display above the same entrance hall, thus providing a complete tour de force of Gem’s work to date.

Gem’s work is a wonderful mix of art and science, organised structure and organic growth. Within it complex themes are interwoven, which also doesn’t prevent him from having a little fun as well. But when taken as a whole, his work simply isn’t something to be missed, as this retrospective amply demonstrates.

SLurl Details

Advertisements

MadPea announce UNIA to close: “Every dream has to end”

UNIA
UNIA

MadPea Games has announced that UNIA, their ground-breaking experience-based game of nightmare and mystery, is coming to an end. The final sleep with come on July 31st, 2016.

UNIA opened just over a year ago after more than two years of extensive development work, and presented perhaps the most immersive, broad-ranging horror / mystery game yet seen in Second Life.  I was privileged to be both witness to the development work and had the  opportunity to visit and explore UNIA ahead of the official opening, and so can vouch both for the amount of work poured into it and the intense, rich nature of the game.

UNIA
UNIA

Combining mystery with first-person adventure and combat activities, UNIA can require between 10 and 12 hours to complete, and players can tackle the adventure in stages, free to leave and return / resume whenever they like (up until the closing date!). There is much to be found and collected as players progress through the game – and gathering items, surviving attacks, etc., all accumulate points (recorded by the game HUD) which can later be traded for prizes.

As well as featuring the work of the incredibly talented MadPea team, the dream / nightmare scenes experienced throughout UNIA have been created by some of SL’s foremost artists: Rebeca Bashly, Caer Balogh, Zachh Barkley, Jaimy Hancroft, Fuschia Nightfire, Bryn Oh, Wildcat Snowpaw, Lindsey Warwick, Abramelin Wolfe, BlueSean Yiyuan and Silex Zapedzki. make UNIA a truly unique experience.

UNIA
UNIA

The announcement of the closure reads in part:

UNIA was a dream come true for us at MadPea but every dream has an ending and UNIA’s end is nigh!

July 31st UNIA will close and the zombie chickens will be returned to their pens, the sandworms will bury themselves forever and the Dreamers will drift off to restful sleep forever more.

To mark the closure, MadPea have abolished the Silver and Bronze player packages and slashed the cost of the Gold package in half to just L$500.

So, if you’ve not found a reason or felt you’ve had the time to try UNIA for yourself – now is the time to do so, before all the strange, mysterious and sometimes deadly inhabitants leave us to forever sleep in peaceful dreams…

Related Links

2016 viewer release summaries: week 17

Updates for the week ending Sunday, May 1st

This summary is published every Monday, and is a list of SL viewer / client releases (official and TPV) made during the previous week. When reading it, please note:

  • It is based on my Current Viewer Releases Page, a list of all Second Life viewers and clients that are in popular use (and of which I am aware), and which are recognised as adhering to the TPV Policy. This page includes comprehensive links to download pages, blog notes, release notes, etc., as well as links to any / all reviews of specific viewers / clients made within this blog
  • By its nature, this summary presented here will always be in arrears, please refer to the Current Viewer Release Page for more up-to-date information.

Official LL Viewers

  • Current Release version: 4.0.3.312816 (dated March 23) – no change
  • Release channel cohorts (See my notes on manually installing RC viewer versions if you wish to install any release candidate(s) yourself):
    • Maintenance RC viewer updated to version 4.0.4.314579 on April 28th – multiple fixes and improvements (download and release notes)
    • Quick Graphics RC viewer updated to version 4.0.4.314426 on April 26th – contains Avatar Complexity and Graphics Quicksets (download and release notes)
  • Project viewers:
    • No Updates.

LL Viewer Resources

Third-party Viewers

V4-style

V1-style

Mobile / Other Clients

  • No updates.

Additional TPV Resources

Related Links

Space Sunday: back to Mars with NASA and SpaceX

CuriosityIt’s been a while since there has been any major news from NASA’s Curiosity rover as it explores “Mount Sharp” in Gale Crater.

The last time I covered the rover’s activities, it was investigating a series of sand dunes which are slowly descending down the slopes of “Mount Sharp” as a result of a combination of gravity and wind action.

This work was completed in March, when the rover resumed its progress up the flank of the mound, climbing onto “Naukluft Plateau”, a roughly flat area cut into the side of “Mount Sharp” where aeons of wind erosion has carved the sandstone bedrock into ridges and knobs which were thought could offer a challenge for the rover in terms of wear and tear on the wheels.

The plateau lay between the rover and the next major area of scientific interest for the mission, so the drive team have been edging the rover across the rough terrain in the hope of reaching smoother ground on which it can continue upwards without exposing its six aluminium wheels to risk of severe damage.

 "Naukluft Plateau", which Curiosity has been traversing since March 2016, shown in close-up, revealing how the surface has been shaped and scoured by the wind over the aeons. In the distance can be seen the rim hills of Gale Crater
“Naukluft Plateau”, which Curiosity has been traversing since March 2016, shown in close-up, revealing how the surface has been shaped and scoured by the wind over the aeons. In the distance can be seen the rim hills of Gale Crater. This image was captured om April 4th, 2016, the rover’s1,302nd Sol (Credit: NASA / JPL)

The roughness of the terrain on the plateau had raised concern that driving on it could be especially damaging to Curiosity’s wheels, as it is very similar to terrain the rover crossed in 2013 while en route to “Mount Sharp”, resulting in visible damage to some of Curiosity’s wheels, punching holes and tears into the aluminium, and prompting the mission team to undertake extensive tests on the wheels and their performance following such damage, using a duplicate of the rover here on Earth.

Because of the previous damage caused to the wheels, Curiosity was instructed to periodically image the condition of its wheels during the drive, a process which slowed progress but also revealed any damage being caused was not accelerating beyond what was projected to occur.

“We carefully inspect and trend the condition of the wheels,” said Steve Lee, Curiosity’s deputy project manager. “Cracks and punctures have been gradually accumulating at the pace we anticipated, based on testing we performed at JPL. Given our longevity projections, I am confident these wheels will get us to the destinations on Mount Sharp that have been in our plans since before landing.”

This image taken on April 18th, 2016 (Sol 1,315) by the Mars Hand Lens Imager (MAHLI) camera on the rover's robot arm revels areas of damage on Curiosity's centre left wheel, the result of periodically traversing very rough terrain since the rover arrived on Mars in 2012
This image taken on April 18th, 2016 (Sol 1,315) by the Mars Hand Lens Imager (MAHLI) camera on the rover’s robot arm revels areas of damage on Curiosity’s centre left wheel, the result of periodically traversing very rough terrain since the rover arrived on Mars in 2012 (Credit: NASA / JPL)

In particular, the mission team is watching for breaks or tears which damage the zig-zag treads – called grousers – on the 50cm / 20 in wheels. If three of these grousers are significantly broken, Earth-based tests suggest the damaged wheel will have reached about 60% of its serviceable life.

However, since Curiosity’s current odometry of 12.7 km (7.9 mi) is about 60 percent of the amount needed for reaching all the geological layers planned in advance as the mission’s science destinations, and no grousers have yet broken, the accumulating damage to wheels is not expected to prevent the rover from reaching those destinations on Mount Sharp.

“Naukluft Plateau” is a part of the larger “Stimson formation” which includes a fracture area the rover reached a late April. Dubbed “Lubango”, the area was the target for the rover’s 10th drilling and sample gathering campaign, which was completed on Sol 1320, April 23rd, 2016.

“We have a new drill hole on Mars!” reported Ken Herkenhoff, a MSL science team member, when reporting on the sample gathering in an MSL update on April 28th.

After transferring the cored sample to the CHIMRA instrument for sieving it, a portion of the less than 0.15 mm filtered material was successfully delivered this week to the CheMin miniaturized chemistry lab situated in the rover’s body, which is now analysing the sample and will return mineralogical data back to scientists on earth for interpretation.

“Lubango” was selected for sample gathering after it had been determined following examination using the ChemCam laser and spectrometer,  that it was altered sandstone bedrock and had an unusually high silica content.  To complement the analysis of “Lubango”, the science team has been using the rover’s camera systems to locate a suitable target of unaltered Stimson bedrock as the 11th drill target.

“The colour information provided by Mastcam is really helpful in distinguishing altered versus unaltered bedrock,” MSL science team member Lauren Edgar explained in describing the current work. One possible target, dubbed “Oshikati” has been identified.

A white-balanced telephoto view of Gale Crater's rim, as seen from the flank of "Mount Sharp"
A white-balanced telephoto view of Gale Crater’s rim, as seen from the flank of “Mount Sharp” (Credit: NASA / JPL)

The ChemCam laser has already shot at the “Oshikati” to gather data for an initial analysis of the rock and assess its suitability for drilling operations. If all goes according to plan, Curiosity should make an attempt to gather samples from the rock on Sunday, May 1st.

SpaceX To Launch NASA-Supported Mars Mission in 2018

On April 27th, SpaceX announced it plans to launch an automated mission to Mars in 2018 as a part of a new space act agreement the company has signed with NASA. This will see the US space agency provide technical support to SpaceX with respect to an automated landing of a SpaceX vehicle on Mars, and provide scientific support for the mission.

an artist's impression of Red Dragon arriving on Mars (credit: SpaceX)
An artist’s impression of Red Dragon arriving on Mars (credit: SpaceX)

SpaceX will undertake the mission using Red Dragon, an automated version of the Dragon 2 capsule vehicle which will enter service in 2018 to fly crews two and from the International Space Station.

Red Dragon has been on the drawing boards at SpaceX almost since the inception of the Dragon 2 programme. Designed to be launched atop the upcoming Falcon 9 Heavy launcher, due to enter operations later this year, it is specifically intended to carry science payloads almost anywhere in the solar system, and could potentially deliver as much as 4 tonnes of cargo to the surface of Mars (that’s  the equivalent of delivering 4.5 Curiosity rovers to Mars in one go).

The 2018 mission is primarily intended to look at using a purely propulsive means of achieving a soft landing of a heavy vehicle on Mars. While parachutes could, in theory, be used to help slow a vehicle’s descent through the Martian atmosphere, recent NASA tests of the kind of large-scale “supersonic” parachutes required to slow large space vehicles during their descent haven’t proved overly successful during comparable testing at high altitude on Earth.

The Falcon 9 Heavy, which could lift scientific payloads aboard the Dragon 2 carrier vehicles almost anywhere in the solar system - compared to the current Falcon 9 (Credit: SpaceX)
The Falcon 9 Heavy, which could lift scientific payloads aboard the Dragon 2 carrier vehicles almost anywhere in the solar system – compared to the current Falcon 9 (Credit: SpaceX)

Dragon 2 has been specifically designed so that a series of 8 rocket engines – called Super Draco motors – are embedded in the base of the vehicle. These can be used both as a launch abort system – firing a crew clear of a malfunctioning rocket during lift-off –  and as a means of the vehicle achieving a “soft landing” on land rather than splashing down in the ocean (although the Dragon 2 is capable of this as well).

On Red Dragon, these super Draco motor allow the vehicle to slow itself down through its descent through the tenuous Martian atmosphere, and then act as a final cushioning break as the craft comes into land. Tethered tests here on Earth have already demonstrated Dragon 2 is fully capable of maintaining a hover until the thrust from the engines, and these tests will be expanded upon during the run-up to the mission.

The Red Dragon initiative is a commercial endeavour, funded entirely by SpaceX. NASA will not be contributing to the cost of the mission, but will be providing Earth-side logistical support and a suitable science payload of around 1 tonne. The exact nature of this payload will be defined in the future,  but will likely include a diverse range of instruments which might be used to further characterise the Martian atmosphere, study and Martian weather and soil, and image the surface of Mars. Both SpaceX and NASA will share the data gathered during what is referred to as the EDL phase of the mission – the Entry, Descent and Landing. NASA will also supply a scientific payload for the flight.

Red Dragon marks the first phase of an ambitious programme SpaceX will be announcing in September, but which has been under development for about the last 6 years, for undertaking human missions to Mars in the 2020 / 2030s. I’ll have more on this later in the year.