To infinity and beyond

Things are a tad quiet on the Mars news front, with Curiosity still on walkabout in the “Pahrump Hills”. So here’s a little round-up of some upcoming NASA news.

Orion Countdown

Thursday, December 4th should see the first launch of NASA’s next generation crewed space vehicle, the Orion Multi-purpose Crew Vehicle (MPCV). Superficially harking back to the days of the Apollo Moon landings, Orion is a two-stage vehicle comprising a capsule-like Command Module, capable of seating up to 6 astronauts, and a smaller Service Module, which supplies propulsion, power and life support. However, Orion is a lot more sophisticated than the Apollo craft, the capsule unit being a lot larger in both size and volume, and having the capabilities of both being reused and of making either a splashdown or landing on dry land on its return to Earth.

The Orions MPCV: an Apollo-like command module and, with its solar panels deployed, the Service Module
The Orion MPCV: an Apollo-like Crew Module and, with its solar panels deployed, the Service Module

As I’ve previously reported, this first launch of Orion will be uncrewed, serving to test the vehicle’s launch, flight and recovery capabilities in a mission lasting some 4.5 hours which will take the craft further from Earth than has been the case for any crewed vehicle since the last of the Apollo lunar missions in the 1970s. In doing so, the vehicle will be tested through the Van Allen radiation belts surrounding the Earth, and the capsule will be directed to re-enter the Earth’s atmosphere at around 80% of the velocity it would achieve on a return from a cislunar mission (that is, roughly 4,000 kp/h (2,500 mph) faster than the space shuttle ever returned to Earth).

Orion is designed to sit at the hub of NASA’s plans for the initial human exploration of the solar system. Its likely future uses include ferrying crews to the Moon and back and, in the 2030s, forming the command vehicle in a human mission to Mars.

An artist's conception of Orion delivering a large lunar lander to the Moon
An artist’s conception of Orion delivering a large lunar lander to the Moon

For lunar missions, Orion will, again like Apollo, be mated to a lunar lander, which it will ferry to the Moon, before the crew transfer to the lander and descend to the Moon’s surface. Again, the differences are that with the Orion mission, the MPCV can remain “parked” in lunar orbit unattended while the crew use their lander and equipment and facilities landed remotely on the Moon to spend weeks or Moons there, rather than days.

For missions to Mars, Orion will be part of a much larger vehicle, the details of which are still to be decided, but which is likely to be launched by Orion’s dedicated rocket, the Space Launch System (SLS), in a number of parts which will rendezvous in orbit prior to the crew flying to it via Orion and embarking. An Orion capsule would then serve as the Crew Return Vehicle, delivering the crew back to Earth at the end of there 3-year mission.

An Orion would serve as the Crew Return Vehicle to deliver the crew safely back to Earth at the conclusion of a nuclear-powered mission to Mars (NASA Design Reference Architecture mission)
An Orion would serve as the Crew Return Vehicle to deliver the crew safely back to Earth at the conclusion of a nuclear-powered mission to Mars (concept: NASA Design Reference Architecture mission)

Orion’s first mission will use a fully-functional capsule mated to a “dummy” service module (the actually service module is to be built by the European Space Agency, using the technologies developed in the hugely successful but grossly under-sung Automated Transfer Vehicle design, which has been quietly resupplying the International Space Station for the last five years (and refuelling it) with up to 7 tonnes of supplies per flight – more than double anything managed by the Russian Progress supply vehicles, the SpaceX Dragon and Orbital Science’s Cygnus vehicle.

In 2017, Orion will make an unmanned flight around the Moon (shown in the video below), this time using an actual Service Module and the SLS launcher, in what is being called the Exploration Mission 1. Then, in around 2021, Orion will fly its first crew in a mission to rendezvous and land on an asteroid.

New Horizons to Wake-up

Assuming all goes according to plan, two days after the Orion test flight, over 26 AU from Earth (AU being an astronomical unit – the average distance between the Earth and the Sun – that’s 149,597,871 kilometres or 92,955,807 miles), a tiny space craft will “wake up” from the third of three hibernation periods which have collectively lasted 31 months, allowing it to ready itself for its primary mission objective: a 6-month “flyby” of the dwarf planet Pluto, which should yield masses of information about that world and its major companion Charon.

after 10 years in space – the last 31 months of which have been largely in hibernation (other than brief periods of science data gathering), and a voyage through our solar system which has, like that of ESA’ comet-chasing Rosetta mission – provided many other opportunities for science discovery, New Horizons will commence its primary mission in January 2015, as it starts into its approach and fly-past of Pluto, Charon and their family of tiny “moons”, Kerberos, Styx, Nix and Hydra.

An artist's impression of New Horizon passing Pluto, with Charon and the Sun behind.
An artist’s impression of New Horizon passing Pluto, with Charon and the Sun behind.

No-one actually knows what New horizons will reveal; such is the distance between Earth and Pluto, we know very little about it in real terms, so the mission is very much like those of the pioneering days of space exploration, when we sent vehicle to Venus and Mars, not actually knowing for sure what they’d find.

Despite travelling at 1,600,000 kilometres a day, it will take New Horizons until July 2015 to reach its point of closest approach to Pluto – just 10,000 kilometres from the planet’s surface. The images and data it should return to Earth promise to be astounding.

And after July 2015? New Horizons will be heading out into deep space beyond our solar system, becoming only the third vehicle built by humans to do so, the other two being Voyagers 1 and 2. Providing it is still active, New Horizon should reach the heliosphere,  the “boundary layer” marking the divide between the solar system and interstellar space, in 2038. Between 2015 and then, the craft will be used to observe other Kuiper belt objects of interest and send back data on the space through which it is travelling.

Wanderers

Whether humanity ever joins Voyager and New Horizons in moving beyond our own solar system is a subject of popular debate. Given the distances involved between the stars, the only practical way of reaching solar systems beyond our own in through exotic methods – faster-than-light travel, wormholes, and the like – if we are to avoid centuries and generations travelling the interstellar void; and there is still no guarantee we’ll harness either.

But even should we remain locked inside our own solar system for centuries to come, we still have a vast range of environments to explore and possibly tame. This is something Erik Wernquist reminds us about in a stunning video he’s produced, using selected commentary spoken by the great Carl Sagan during his ground-breaking television series, Cosmos. This really is one to watch.

My thanks to Nalates Urriah for pointing me to Erik’s video.

Of Martian walkabouts, pictures from a comet, and getting ready to fly

CuriosityIn my last report on the Mars Science Laboratory, I mentioned that Curiosity has been on a geology “walkabout” up the slopes of the “Pahrump Hills” at the base of “Mount Sharp” (more correctly, Aeolis Mons). The zigzagging route up through the area took the rover from “Confidence Hills” and the location of the last drilling operation up to a point dubbed “Whale Rock”, the drive being used to gather information on potential points of interest for further detailed examination.

The exposed rocks in this transitional layering between the floor of Gale Crater, in which Curiosity arrived back in August 2012, and the higher slopes of “Mount Sharp” is expected to hold evidence about dramatic changes in the environmental evolution of Mars. Thus, the “walkabout”  – a common practice in field geology on Earth – was seen as the best means of carrying out a reasonable analysis of the area in order for the rover to be most efficiently targeted at specific locations of interest.

Curiosity’s walkabout, from “Confidence Hills” to “Whale Rock” in October, the rover is now working its way back to various points of interest for further studies

“We’ve seen a diversity of textures in this outcrop,” Curiosity’s deputy scientist Ashwin Vasavada (JPL) said of the drive. “Some parts finely layered and fine-grained, others more blocky with erosion-resistant ledges. Overlaid on that structure are compositional variations. Some of those variations were detected with our spectrometer. Others show themselves as apparent differences in cementation or as mineral veins. There’s a lot to study here.”

During the drive, Curiosity travelled some 110 metres, with an elevation of about 9 metres, using the Mastcam and the ChemCam (Chemistry and Camera) laser spectrometer system to inspect and test potential points of interest for more detailed examination at a later date. Since completing that drive, the rover has been working its way back through Pahrump Hills, this time examining specific targets using the robot-arm mounted Mars Hand Lens Imager (MAHLI) camera and spectrometer. Once this work has been completed, specific targets for in-depth analysis, including drilling for samples will for the core activity of a third pass through the area.

So far, two specific areas have been identified for detailed examination. The first, dubbed “Pelona” is a  fine-grained, finely layered rock close to the “Confidence Hills” drilling location. The second is a small erosion-resistant ridge dubbed “Pink Cliffs” the rover drove around on its way up the incline.

“Pink Cliffs” is roughly a metre (3ft) in length and appears to resist wind erosion more than the flatter plates around it.As such, it offers precisely the kind of mixed rock characteristics mission scientists want to investigate in order to better understand “Mount Sharp’s” composition. This image is a mosaic of 3 pictures captured on October 7th PDT, 2014 (Sol 771 for the rover) by Curiosity’s Mastcam. It has been white balanced to show the scene under normal Earth daylight lighting – click for full size.

Another target of investigation has been the edge of a series of sand and dust dunes right on the edge of “Pahrump Hills”.  In August 2014, Curiosity attempted to use these dunes as a means to more quickly access the “Pahrump Hills” area, but the effort had to be abandoned when it proved far harder for the rover to maintain traction than had been anticipated, particularly given the rover has successfully negotiated sandy dunes and ridges earlier in the mission. As a result, scientists are keep to understand more about the composition of the dunes.

On November 7th, Curiosity was ordered to venture onto the dunes very briefly in order to break the surface of one of the rippled dunes and expose the underlying layers of sand in an effort to better understand why the rover found the sand such hard going the first time around, and what might be within these wind-formed dunes that would prove to be so bothersome to driving over them. Data gathered from the drive is still being analysed.

Spanning roughly 1.2 metres from left to right, a wheel track breaks the surface of a dust sand dune ripple on the edge of “Pahrump Hiils”. The MSL science team hope the exposed material within the ripple will help them understand why Curiosity found these dunes hard-going when trying to cross them in August 2014.

The work in the “Pahrump Hills” area has given rise to concerns over one of the two lasers in the ChemCam instrument. As well as the main laser, known for “zapping” targets on the surface of Mars in order to reveal their chemical and mineral composition, the system uses a second laser, a continuous wave laser, used for focusing the ChemCam’s telescope to ensure the plasma flash of vaporised rock is properly imaged when the main laser fires. Data received on Earth when using the ChemCam to examine rocks on the first pass through “Pahrump Hills” suggests this smaller laser is weakening and may no longer be able to perform adequately.

If this is the case, the laser team plan to switch to using an auto-focus capability with the telescope so it will automatically focus itself on a few “targeting” shots from the main laser ahead of any data-gathering burst of fire, allowing for proper telescope calibration.

Continue reading “Of Martian walkabouts, pictures from a comet, and getting ready to fly”