2016 viewer release summaries: week 15

Updates for the week ending Sunday, April 17th

This summary is published every Monday, and is a list of SL viewer / client releases (official and TPV) made during the previous week. When reading it, please note:

  • It is based on my Current Viewer Releases Page, a list of all Second Life viewers and clients that are in popular use (and of which I am aware), and which are recognised as adhering to the TPV Policy. This page includes comprehensive links to download pages, blog notes, release notes, etc., as well as links to any / all reviews of specific viewers / clients made within this blog
  • By its nature, this summary presented here will always be in arrears, please refer to the Current Viewer Release Page for more up-to-date information.

Official LL Viewers

  • Current Release version: (dated March 23) – no change
  • Release channel cohorts (See my notes on manually installing RC viewer versions if you wish to install any release candidate(s) yourself):
    • Maintenance RC viewer updated to version on April 15th – fixes for viewer crashes, memory leaks, input/cursor issues, graphics bugs, invisiprims, formatting and notifications (download and release notes)
    • Quick Graphics RC viewer updated to version on April 15th – comprises the graphics presets capability and the new Avatar Complexity settings (download and release notes)
  • Project viewers:

LL Viewer Resources

Third-party Viewers


  • Alchemy updated to version on April 16th – core updater client-side AO, rendering improvements (release notes).


  • Cool VL viewer Stable branch updated to Experimental branch updated to version, both on April 16th (release notes).

Mobile / Other Clients

  • No updates.

Additional TPV Resources

Related Links

Space Sunday: BEAM and Kepler, Europa and comets

Euorpa's icy, mineral-stained surface as imaged by NASA's Galileo mission - see bwlow (credit: NASA / JPL)
Euorpa’s icy, mineral-stained surface as imaged by NASA’s Galileo mission – see below (credit: NASA / JPL)

In my last Space Sunday article, I covered the arrival of the BEAM inflatable module at the International Space Station, and the concerns for NASA’s Kepler “planet hunter” space observatory. As there’s been further news on both of these, I thought I’d start this Space Sunday with a quick round-up on them, starting with Kepler.

The Kepler observatory, located some 121 million kilometres (75 million miles) “behind” Earth as both orbit the Sun, has been engaged in a 7-year mission to try to locate planets – particularly possible Earth-type planets – orbiting other stars. As I reported last time around, despite one major setback which called a halt to the observatory’s primary mission in 2012, Kepler has been a remarkably successful mission, catalogue some 4,000 potential planets orbiting other suns, with over 1,000 subsequently confirmed as planets.

However, on April 7th, Kepler reported to mission managers that it has entered Emergency Mode – a status indicating a critical problem has occurred, causing the observatory to shut down all science operations and other systems, and was utilising its supplies of valuable propellant to maintain its orientation so it could communicate with Earth, rather than using its electric reaction wheels, powered by sunlight.

Keler 425b - the first Earth-like planet to be found orbiting within its sun's habitable zone
Keler 425b – the first Earth-like planet to be found orbiting within its sun’s habitable zone (credit: NASA)

Over the next several days, mission engineers were able to upload instructions to Kepler so that it could position itself in a “point rest state” where communications could be maintained without eating into further propellant reserves. Following this, a long, slow data download commenced, which allowed engineers to fully understand the extent of the problem – but not the cause. However, this has been enough for a path to recovery to be determined.

Kpler: being nursed back to health from 121 million km away
Kpler: being nursed back to health from 121 million km away (credit: NASA)

Since April 12th, commands have been sent to the observatory instructing it to bring it non-critical systems back on-line one at a time, monitoring responses as it did so. With each system successfully restored, Kepler has been gradually coming to life whilst eliminating potential causes of the original problem. There is still a way to go, but mission managers are now reasonably confident Kepler can be restored to a fully operational status.

“The recovery started slowly and carefully, as we initially merely tried to understand the situation and recover the systems least likely to have been the cause,” said Kepler programme manager Charlie Sobeck on April 14th. “Over the last day and a half, we’ve begun to turn the corner, by powering on more suspect components. With just one more to go, I expect that we will soon be on the home stretch and picking up speed towards returning to normal science operations.”

Meanwhile, BEAM – the Bigelow Expandable Activity Module – an inflatable prototype habitat module which arrived at the International Space Station on April 10th – was extracted from its ferry vehicle, the uncrewed Dragon resupply vehicle, on Saturday April 16th, and successfully secured against the airlock node of one of the station’s modules.

the extraction and relocation were undertaken remotely, using the space station’s robot arm commanded from Earth to lift the BEAM unit, still in its compact “flight” configuration just 2.4 metres (8ft) in length and 2.1 metres (7ft) diameter, from the unpressurised section of the Dragon cargo vehicle and then position it against the US Tranquillity Module of the space station, where it was secured by astronauts Tim Kopra and Jeff Williams.

Space station commander Tim Kopra took this photograph of the BEAM unit, in its compact state, being moved towards the Tranquillity module by the station's robot arm, ready for it to be secured against one of the station's airlocks
Space station commander Tim Kopra took this photograph of the BEAM unit, in its compact state, being moved towards the Tranquillity module (seen on the left, directly under the robot arm) by the station’s robot arm, ready for it to be secured against one of the station’s airlocks (credit: NASA / Tim Kopra)

The module is not due to be inflated until early May, when it will increase in size to some 4m x 3.5m (13ft x 10.5ft) and provide some 16 cubic metres (565 cubic ft) of working space. It will be equipped with monitoring equipment  to investigate how well it protects against solar radiation, space debris and contamination over a 12-18 month period. During this time, ISS crew members will enter the unit 3 or 4 times a year to collect deployment dynamics sensor data, perform microbial surface sampling, conduct periodic change-out of the radiation area monitors, and inspect the general condition of the module.

Animation showing the manoeuvre to position BEAM against the Tranquillity module

Continue reading “Space Sunday: BEAM and Kepler, Europa and comets”