Tag Archives: New Horizons

Space Sunday: from Earth orbit to Pluto, via Mars

The "supermoon" of November 14th rises over the MS-03 spacecraft the Baikonur Cosmodrome in Kazakhstan, where it was being prepared for launch to the International Space Station

The “supermoon” of November 14th rises over the Soyuz MS-03 spacecraft the Baikonur Cosmodrome in Kazakhstan, where it was being prepared for launch to the International Space Station. Credit: NASA

The second of the three so-called “supermoons” which see out 2016 produced some dramatic photographs and video from around the world. Perhaps one of the most stunning  came from cameras at the Baikonur Cosmodrome in Kazakhstan, monitoring Soyuz MS-03 as it stood on the pad at Launch Complex 1.

As I noted in my last Space Sunday Report, a “supermoon” occurs when the Moon is both full and at perigee – the point in its orbit when it is closest to the Earth as it travels around our planet in an elliptical orbit. Such events occur around every 14 months, and can see the Moon appear to be 14% bigger than its average size in our sky, particularly when seen low on the horizon.

The “supermoon” of November 14th was special because the Moon was about at its closest point to Earth in its orbit – “just” 356,509 kilometres (221,524 miles) from us and the Earth / Moon system is approaching the time of year when it is closest to the Sun (which will occur on January 4th, 2017), thus making the full Moon “extra” bright for those who were able to see it. The next time this will occur will be in 2034. However, December 14th will see another “supermoon”, albeit one at a slightly greater distance away from the Earth, so those who missed November’s – weather permitting – may still get to see one before the year is out. In the meantime, here’s NASA’s footage from Baikonaur  – the film obviously speeded-up 🙂 .

Soyuz MS-03 lifted-off from Baikonur on Friday, November 18th, carrying aloft Russian cosmonaut Oleg Novitskiy, American astronaut  Peggy Whitson and rookie French astronaut Thomas Pesquet. It successfully docked with the International Space Station on Saturday, November 19th, marking the start of the Expedition 50/51 mission aboard the station, the crew sharing space with the Expedition 49/50 crew of mission commander Shane Kimbrough of NASA and Russian cosmonauts Sergey Ryzhikov and Andrei Borisenko, who have been aboard the station since October and who are due to return to Earth in February 2017.

For Whitson, this is a double first: she is the oldest woman to ever fly to the ISS – she will celebrate her 57th birthday in orbit – and, come February, she will be the first woman to command the space station for a second time in its 16-year operational history, having already become the very first woman to take command during Expedition 16 in 2007. She is also NASA’s most experienced female astronaut, with nearly 377 days logged in space, including six space walks totalling 39 hours 46 minutes. By the time she returns to Earth, she will have spent more time in space than any other US astronaut, surpassing the 534-day record set by Jeff Williams in September 2016.

Peggy Witson with Oleg Novitsky and Thomas Pesquet posing for photographs prior to launch. Via: Peggy Whitson

Peggy Witson with Oleg Novitskiy and Thomas Pesquet posing for photographs prior to launch. Via: Peggy Whitson

During their time aboard the station, Whitson, Novitskiy and Pesquest will conduct hundreds of experiments and studies in biology, biotechnology, physical science and Earth science. A particular focus will be recording how lighting impacts the overall health and well-being of station crew members, and how the microgravity environment in orbit affects tissue regeneration in humans and the genetic properties of space-grown plants.

The crew carry with them some special meal time treats as well. Taking a leaf from British astronaut Tim Peake’s book, Pesquest requested fellow countrymen and renowned chefs Alain Ducasse and Thierry Marx develop a special menu for the crew. Highlights include beef tongue with truffled foie gras and duck breast confit.

Soyuz MS-03, piloted by Oleg Novitsky, closes for a docking with the Russian-built Rassvet module on Saturday, November 19th. In the foreground is the Cygnus resupply vehicle which recently arrived at the space station, together with one of its circular solar power arrays

Soyuz MS-03, piloted by commander Oleg Novitskiy, closes for a docking with the Russian-built Rassvet module on Saturday, November 19th. In the foreground is the Cygnus resupply vehicle which recently arrived at the space station, one of its circular solar power arrays partially blocking the view of the incoming Soyuz. Credit: NASA

“We have food for the big feasts: for Christmas, New Year’s and birthdays. We’ll have two birthdays, mine and Peggy’s,” the Frenchman said at the astronauts’ last press conference before the launch.

Pesquest,  a former commercial airline pilot with Air France, is also set to offer some entertainment for the crew: a keen musician, he’s taken his saxophone to the ISS. As part of his work on the station, he has special responsibility for the Proxima research programme of 50 experiments developed by the European Space Agency and the French national space agency, CNES. The programme’s name was suggested by 13-year old Samuel Planas from Toulouse, France, following a nationwide competition among school children. It is taken from Proxima Centauri, with the X in the name both representing the unknown, and the fact that Pesquest is the tenth French astronaut to fly in space.

Oleg Novitskiy, a 45-year-old lieutenant colonel in the Russian Air Force, is also on his second mission aboard the ISS, having previously served as the Soyuz TMA-06M commander during the flight to the ISS, and as the station’s flight engineer during Expedition 33/34. He has spent 143 days 16 hours and 15 minutes in space.

Continue reading

Advertisements

Space Update: Planet Nine, “signalling” stars and a quick round-up

Planet Nine, if it exists,could equal Neptune in size, and orbits the Sun 200 times further away than Earth. Credit: Caltech / R. Hurt

Planet Nine, if it exists,could equal Neptune in size, and orbit the Sun 200 times further away than Earth. Credit: Caltech / R. Hurt

In January and February 2016, I wrote about Planet Nine (or Planet X, George, Jehoshaphat, or Planet of the Apes, depending  your preference), the Neptune-sized world believed to be orbiting the sun on the very edge of the solar system in a highly eccentric orbit. Since then, the search for this mysterious world has continued, and while it has yet to be located, evidence that it exists has been mounting. Not only that, but astronomers now believe it might explain why the solar system is “tipped”.

The Hunt started after Mike Brown, a leading planetary astronomer at the California Institute of Technology (Caltech), and his colleague Konstantin Batygin developed a computer model which showed that the very eccentric orbits of six Trans-Neptunian Objects (TNOs) located in what is called the scattered disk,  a sparsely populated region of space between 30 100 AU from the sun, overlapping with the Kuiper belt, could have been due to the influence of a massive, distant planet. At the time, they noted that if the model was correct, other TNOs would likely  occupy equally distinct orbits.

A planet averaging about 10 times as massive as Earth, called Planet Nine could explain the paths of six distant objects in the solar system with mysterious orbits

A planet averaging about 10 times as massive as Earth, called Planet Nine could explain the paths of six distant objects in the solar system with mysterious orbits. Credit: Caltech / R Hurt

At the joint European Planetary Science Congress (EPSC) and American Astronomical Society’s Division for Planetary Sciences (DPS) in October, it was revealed more TNOs fitting the model have been discovered over the past several months. Two of them,  2013 FT28 and 2014 SR349, precisely fit the same type of orbit seen the original six objects used by Brown and Batygin model. Five more have been found in orbits which are effective perpendicular to Planet Nine’s believed orbit around the Sun, something predicted by the computer model.

All of this is helping to narrow down Planet Nine’s potential orbit around the Sun, and the arc of that orbit where it might be found. So much so that Batygin, Brown have teamed with original proponents for Planet Nine Chad Trujillo and Scott Sheppard to use the 8-metre Subaru Telescope atop Mauna Kea in Hawaii to carry out a  search of the night sky. Sheppard and Trujillo are also using two telescopes in Chile to search the possible sweep of the planet through the southern hemisphere’s night sky. And they are not alone.

The Brown / Batygin model for Planet Nine indicated the planet would cause some TNOs to ine in orbits perpendicular to the planet's own eccentric orbit around the Sun - and five such object have now been discovered (shown in teal, with the original TNOs possibly influenced shown in magenta. Credit: Caltech

The Brown / Batygin model for Planet Nine indicated the planet would cause some TNOs to lie in orbits perpendicular to the planet’s own eccentric orbit around the Sun – and five such object have now been discovered (shown in teal, with the original TNOs possibly influenced shown in magenta. Credit: Caltech

Also at the planetary conference, graduate student Elizabeth Bailey, using Brown and Batygin’s data presented a paper proposing how the odd tilt to the solar system’s major planets relative to the Sun might be due to Planet Nine.

With the exceptional of Mercury, all the major planets in the solar system orbit along a plane tilted by about six degrees from the Sun’s equator. This suggests either the Sun was somehow tipped on its axis in the past, or the planets have been pulled from their original alignment along the Sun’s equatorial plane. Of these two ideas, the preferred option has been for exotic interactions between the early Sun’s magnetic field and the primordial disk of gas surrounding it, inclining the latter, which then formed the planets. However, Bailey’s simulations suggest that a large body occupying Planet Nine’s predicted orbit could have had sufficient influence on the Sun over some 4 billion years to have slowly tipped it over by six degrees. Bailey’s hypothesis was supported by a  Brazilian team of astronomers, who used a different analytical method while working independently from her, and reached the same conclusion.

As it might be: estimates concerning Planet Nine's possible size, mass, etc., should it exist. Credit: Space.com / Karl Tate

As it might be: estimates concerning Planet Nine’s possible size, mass, etc., should it exist. Credit: Space.com / Karl Tate

Even so, some remain sceptical that the mysterious world exists. “I give it about a 1% chance of turning out to be real,” says astronomer JJ Kavelaars, of the Dominion Astrophysical Observatory in Victoria, Canada. Interestingly, his fellow researcher and collaborator Cory Shankman,  has created models with the exact orbits of the original six TNOs used by Brown and Batygin, and found that a massive planet would not maintain their tell-tale clustering for long periods.

Thus, the search for the solar system’s mysterious Planet Nine, continues.

ETs Phone Home?

Are aliens sending signals using their own stars? That’s what might be happening, according to astrophysicists Ermanno Borra and Eric Trottier, from Laval University in Quebec; although they admit it’s only one possible explanation for what they appear to have discovered.

It was in 2012 that Borra predicted intelligent aliens might use the light from their own stars to signal their existence to the cosmos. Using data from the Sloan Digital Sky Survey, Borra and Trottier analysed the spectra of 2.5 million stars to see if this might be the case – and found 234  which seem to be broadcasting a signal of the kind predicted by Borra.

The “signals” are pulses in the stars’ light, separated by a constant time interval. What’s more, all 234 stars are predominantly in the F2 to K1 spectral range, which is the small range of stars centred on the spectrum of our own life-supporting Sun, and thus the broad group of stars thought might support life on planets orbiting them.

The Sloan Digital Sky Survey telescope, New Mexico. Credit: SDSS / Fermilab Visual Media Services / NASA

The Sloan Digital Sky Survey telescope, New Mexico. Credit: SDSS / Fermilab Visual Media Services / NASA

However, as Borra and Trottier note in their paper – which has yet to be comprehensively peer-reviewed – the pulses could be the result of natural factors such as rotational transitions in molecules or the Fourier transform of spectral lines. It might even be due to rapid pulsations in the stars themselves. Nevertheless Borra and Trottier have tended to dismiss rotational transitions on the grounds that such behaviour isn’t common to these types of star. They also think it unlikely a Fourier transform is responsible.

Instead, they lead towards either the “signals”  being an artefact produced by data reduction on the part of the Sloan instrument, or the work of ET, with a slight emphasis towards the ET side of their thinking.  Others, having read their paper, are far more sceptical.

“It seems unlikely that 234 separate alien societies would be sending out such similar signals more or less simultaneously” Seth Shostak, a senior astronomer at the SETI (Search for Extraterrestrial Intelligence) Institute in Mountain View, California said. “It would be like expecting us to send the same signals as the Abyssinians — it doesn’t make a whole lot of sense.” Instead, Shostak leans towards the data reduction explanation; as does Occam’s Razor.

But a further possible explanation has been suggested: that the signals are due to highly peculiar chemical compositions in a small fraction of galactic halo stars which has  never been previously encountered. While not as exotic as aliens using their stars as signalling devices, should this prove to be the case, it would still be a remarkable new discovery.

Continue reading

Space Sunday: water, rockets, telescopes

Euorpa's icy, mineral-stained surface as imaged by NASA's Galileo mission - see bwlow (credit: NASA / JPL)

Euorpa’s icy, mineral-stained surface as imaged by NASA’s Galileo mission – see below (credit: NASA / JPL)

NASA have been teasing the press and pundits with news that they have a “surprising” announcement to make about Europa, one of Jupiter’s four Galilean moons (so-called as they were first recorded by Galileo Galilei).

Slightly smaller than our own Moon, Europa is covered by shell of water ice, much of it discoloured by mineral deposits and by deep cracks. This icy surface might only be relative thin, on the order of a handful of kilometres in extent, or it might be tens of kilometres thick, and sits over an ocean which is mostly likely liquid water, although some argue it might actually be an icy slush, perhaps extending to 100 km (62.5 miles) in depth.

The ocean is made possible by tidal flexing enacted by the massive gravity of Jupiter as well as from the other large Galilean moons. This generates heat within Europa, and this heat stops the water from freezing solid.

An artist's impression of what the 2012 water plume might have looked like if seen from the vicinity of Europa. Credit: NASA / ESA / M. Kornmesser.

An artist’s impression of how a huge plume of water, over 200km (125 mi) high, which erupted from Europa in 2012 and was “seen” by the Hubble Space Telescope, might have looked like if witnessed from the vicinity of Europa. Credit: NASA / ESA / M. Kornmesser.

Exactly how much heat is generated as a result of this flexing isn’t known, but it has been suggested that the ocean floor could be home to volcanic activity with hydrothermal vents and fumeroles responsible for pumping huge amounts of minerals into the water, as well as supplying energy, potentially marking Europa’s ocean as a place where basic microbial life might arise.

The discovery of life on Europa isn’t going to be the subject of the NASA press conference. It will instead reveal the findings of a Europa observation campaign using the Hubble Space Telescope linked to the potential for a liquid water ocean being present under the moon’s ice. I’ll likely have more next week.

Nor is Europa likely to be alone in harbouring a subsurface ocean among the Galilean moons of Jupiter. In 2015 data from the Hubble Space Telescope confirmed that Jupiter’s largest moon, Ganymede, has an underground ocean that contains more water than all of Earth’s combined. Hubble was used to carry out a spectrographic observation of Ganymede’s aurorae, displays of light in the atmosphere. Because aurorae are controlled by a moon or planet’s magnetic field, observing changes in how they behave offers insights into what is happening beneath the surface of the planet or moon. In Ganymede’s case, the aurorae allowed scientists to confirm a long-suspected subsurface salt water there.

Pluto’s Liquid Heart

Four images from New Horizons’ Long Range Reconnaissance Imager (LORRI) were combined with color data from the Ralph instrument to create this global view of Pluto. The images, taken when the spacecraft was 280,000 miles (450,000 kilometers) away from Pluto, show features as small as 1.4 miles (2.2 kilometers). Credits: NASA/JHUAPL/SwRI

A global mosaic of Pluto captured by New Horizons from a distance of  450,000 km (280,00 mi) from Pluto byt New Horizons on July 14th, 2015, coloured from data received by the RALPH instrument on the spacecraft, reveals the planet’s heart-shaped mark, the left “lobe” of which is formed by the massive depression dubbed “Sputnik Planum”. Credit: NASA/JPL / JHU/APL / SwRI

In June, I wrote about a paper proposing Pluto harbouring a liquid water ocean beneath its surface. The paper, by Planetary Science Institute Senior Scientist Amy C. Barr and Noah P. Hammond of Brown University, reached its conclusion after a prolonged study of Pluto’s geological features, including “Sputnik Planum”, a massive depression on the planetoid which forms one “lobe” of Pluto’s distinctive “heart”.

Barr and Hammond’s work focused on the lack of ice II on Pluto – a place where ice II should be expected to form. Had it done so, it would have caused volume contraction, resulting in the formation of compressional tectonic features on the surface of the planet. However, Barr and Hammond found no evidence for such features on Pluto in all of the images returned by the New Horizons spacecraft which flew past Pluto and its twin, Charon, in July 2015. This led them to conclude that Pluto’s interior is warmer than might be expected, which would both prevent ice II from forming and potentially give rise to a liquid ocean beneath Pluto’s frozen crust.

Now, a second paper has been published in Geophysical Research Letters, offering a suggestion as to how deep that ocean is, and its potential composition. Another research team at Brown University have been investigating the dynamics between Pluto and Charon, and the likely formation and development of the “Sputnik Planum” depression, which is thought to have been initially created by the impact of an object some 200 km (125 mi) across at some point in Pluto’s formative years.

Pluto and Charon are tidally locked with each other, so they always show each other the same face as they rotate. “Sputnik Planum” sits directly on the tidal axis linking the two worlds. This suggests the basin has what’s called a positive mass anomaly — it has more mass than average for Pluto’s icy crust. As Charon’s gravity pulls on Pluto, it would pull proportionally more on areas of higher mass, which would tilt the planet until “Sputnik Planum” became aligned with the tidal axis.

The surface ice on "Sputnik Planum" is constantly being renewed both by atmospheric deposition from above, and convection action from below, suggesting a source of heat beneath the ice, which in turn could be keeping any subsurface ocean liquid. Credit: NASA/JPL / JHU/APL / SwRI

The surface ice on “Sputnik Planum” is constantly being renewed both by atmospheric deposition from above, and convection action from below, suggesting a source of heat beneath the ice, which in turn could be keeping any subsurface ocean liquid. Credit: NASA/JPL / JHU/APL / SwRI

But why would a crater – essentially a hole in the ground – be a positive mass anomaly? Part of the answer probably lies in the huge amount of nitrogen ice which has accumulated in the basin over the aeons, adding mass to the basin.

But the ice isn’t thick enough on its own to create the amount of mass needed to make “Sputnik Planum” have positive mass. Water, however, could have sufficient mass.

An impact creates a dent on a planet’s surface, followed by a rebound. That rebound pulls material upward from deep in the planet’s interior. If that material is denser than what was blasted away by the impact, the crater ends up with the same mass as it had before the impact happened. Any material added to it after the impact and rebound would therefore add mass to it, creating a positive mass anomaly.

Continue reading

Space Sunday: celestial harmonics, breathing air and singing for Pluto

July 14th: Jupiter with Io, Europa and Ganymede as seen by Juno after the craft had finished its critical orbital burn to slip into a 53.5 day orbit around the giant planet

July 10th: Jupiter with Io, Europa and Ganymede as seen by Juno after the craft had finished its critical orbital burn to slip into a 53.5 day orbit around the giant planet on July 4th. Credit: NASA/JPL / SwRI / MSSS (click and image for full size)

The banner image, captured by NASA’s Juno spacecraft, might look like the one I used in my last Space Sunday update, but there is one important difference. The images used last time around had been captured by Juno on June as it approached the Jovian system on June 29th, five days before the craft had to complete a critical engine burn whilst almost scraping the planet’s cloud tops, to place itself in an extended orbit around Jupiter. The image above was captured on July 10th, as Juno headed away from Jupiter, having successfully completed the manoeuvre.

At the time the picture was captured, 17:30 UTC on July 10th, 2016, Juno was already  4.3 million kilometres (2.7 million miles) distant from the planet, and heading away from it at a relative velocity of 18,420 km / hour (11,446 mph) and decelerating under the influence of the Jupiter’s gravity.

Juno's flight around the poles of Jupiter and it's position on July 10th, as seen by the NASA Eyes application

Juno’s flight around the poles of Jupiter and it’s position on July 10th, as seen using the NASA Eyes simulator (click for full size)

Juno’s imaging system – JunoCam – had, along with other major systems aboard the craft, been shut down prior to the July 4th engine burn, both to conserve power – Juno had to turn its solar panels away from the Sun during the burn manoeuvre, limiting the available electrical power – and to protect them through the initial passage through Jupiter’s tremendous radiation fields. It wasn’t until July 6th that the instruments were all powered back up, and after testing them, the July 10th exercise was the first opportunity to have a look back at the Jovian system.

Juno will keep travelling outwards from Jupiter until the end of July, slowing to a relative velocity of just 1,939 km/h (1212 mph), before it starts to “fall” back towards the planet, making a second close flyby on August 27th. At this time, the craft will pass just 4,142 km (2,575 mi) above the Jovian cloud tops at a speed of 208,11 km/h (129,315 mph). More importantly, all of vehicle’s science instruments will remain powered-up, and JunoCam in particular should gain some stunning images of Jupiter during this second close pass.

To celebrate Juno’s arrival around Jupiter, NASA released a time-lapse video of the Jovian system as seen by the approaching spacecraft. It begins on June 12th with Juno 16 million km (10 million mi), and ends on June 29th, when JunoCam was shut down and Juno was 4.8 million km (3 million mi) distant.

Made possible by Juno’s high angle of approach into the Jovian system, it is the first close-up view of celestial harmonic motion we’ve ever had. Also, the 17-day duration of the movie means we see Callisto (flickering very faintly) make a full orbit around Jupiter, and get to see Ganymede, Europa and Io (counting inwards towards the planet) each experience eclipse as they pass through Jupiter’s shadow. Note that the flickering exhibited by the moons is an artefact of JunoCam, which is optimised to image bright features on Jupiter, rather than capturing the (relatively) dim pinpoints of the distant moons as they circle the planet.

Curiosity Resumes Operations as 2020 “Sister” Takes Shape

In my last update I reported that NASA Mars Science Laboratory, Curiosity, had entered a “safe” mode on July 2nd.  On July 9th, the mission team successfully recovered the rover from this safe mode – a precautionary state the rover will set for itself should it detected an event which could damage its on-board systems – and then subsequently returned Curiosity to a fully operational status on July 11th.

The cause of the problem lay in  a glitch in one of the modes by which images are transferred from the memory in some of the rover’s camera systems to its main computers. This generated a data mismatch warning, prompting the rover to active its “safe” mode and call Earth for assistance. Use of this particular data transfer mode between the identified camera systems and the computers is now being avoided in order to prevent a repeat of the problem.

Meanwhile, NASA’s next rover mission – designated Mars 2020 at present, as it will launch in the summer of that year to arrive on Mars in February 2021 – is taking shape. The basic vehicle will be based on the Curiosity class of rover, but will carry a different science suite and have somewhat different capabilities.

A CAD image of the Mars 2020 rover: visibly similar to MSL's Curiosity rover. Credit: NASA

A CAD image of the Mars 2020 rover: visibly similar to MSL’s Curiosity rover. Credit: NASA

In particular, the new rover will carry an entirely new subsystem to collect and prepare Martian rocks and soil samples which can be stored in sample tubes. About 30 of these sample tubes will be deposited at select locations, so that they might be collected by a possible future automated mission and returned to Earth for direct analysis for evidence of past life on Mars and possible health hazards for future human missions.

Two science instruments mounted on the rover’s robotic arm will be used to search for signs of past life and determine where to collect samples by analysing the chemical, mineral, physical and organic characteristics of Martian rocks, while a suite of advanced camera systems will be housed on the vehicle’s mast. As with Curiosity, Mars 2020 will carry a comprehensive meteorological suite for monitoring the Martian environment and weather, together with a ground penetrating radar system for determining what is going on under the rover’s wheels.

Continue reading