Space Sunday: the ISS, and commercial launch systems

The International Space Station, November 8th, 2021. Credit. T. Pesquet / ESA / NASA

The International Space Station (ISS) faced further threats from space debris this past week. One December 1st., a planned EVA spacewalk by NASA astronauts Thomas Marshburn and Kayla Barron was pushed back 24 hours over concerns about an unspecified debris threat that might be related to continuing concerns over the recent Russian ASAT missile test that left a cloud of debris orbiting Earth in an orbit that can pass relatively close to the space station.

Then on December 3rd, the ISS had to take more direct action to avoid any risk of collision with a piece of debris designated 39915, a major part of the upper stage of a Pegasus air-launched rocket that flew in 1994, and broke apart two years later.

Tracking the debris showed it would come within 5.5 km of the station, so the decision was taken to use the motors of a Progress re-supply vehicle to lower the station’s orbit to increase the clearance between it and the debris.

The ISS seen from “above” showing the main truss with 8 of the 12 gold solar arrays, the grey thermal radiators, the “international” modules towards the bottom of the picture and the Russian modules extending back between the thermal radiators. Credit; T. Pesquet / ESA / NASA

The motor firing took place at 08:00 UTC on December 3rd, with the thrusters on the Progress vehicle firing for three minutes. The manoeuvre is not expected to impact the December 8th launch of Soyuz MS-20 on Wednesday, December 8th, classified a “space tourism” flight featuring Japanese billionaire Yusaku Maezawa and his assistant, Yozo Hirano on an 18-day trip to the ISS. This will mark the first tourist flight to the space station since 2009. Maezawa is also the name (and money) behind the proposed Dear Moon cislunar mission using a SpaceX Starship vehicle.

All of this excitement blotted the news that NASA’s Office of Inspector General (OIG) has warned that NASA and its partners will potentially be without any Earth orbiting space station for a number of years if the ISS is to be “retired” as may currently be the case.

While NASA awarded US $415.6 million to three U.S. groups to develop designs for new orbit “destinations” – commercially-run space stations that can take over from the ISS from 2030 onwards – OIG has stated concerns any of these plans can be realised by that year – seen as the year in which ISS operations are expected to draw to a close.

One of the groups awarded a NASA contract is lead by Blue Origin and Sierra Space, who are promoting their Orbital Reef space station. Credit: Blue Origin / Sierra Space

In particular, the OIG report questions the ability for any commercial space station to be ready by the end of the decade, given the commercial market for on-orbit activities sans government financial support has yet to be assessed, as have the overall costs of developing space station facilities – or even the amount of funding NASA can provide to help ease development along.

In our judgment, even if early design maturation is achieved in 2025 — a challenging prospect in itself — a commercial platform is not likely to be ready until well after 2030. We found that commercial partners agree that NASA’s current timeframe to design and build a human-rated destination platform is unrealistic.

– NASA OIG report on commercial space stations

The report suggests that a further extension to ISS operations to eliminate any gap. However, doing so requires clearing some significant hurdles. The first is that of finance. The Untied States covers more than 50% of the ISS operational budget, and feelings about continuing to support the project beyond 2030 within Congress are very mixed.

There is also the fact that several of the older modules – notably the Russian Zvezda service module – are approaching the end of their operational life. Zvezda in particular has been suffering numerous leaks that have affected overall atmospheric pressure within the station, and numerous fatigue cracks have been located within the module’s structure, not all of which can be fully repaired.

Finally, Russia has indicated it is unwilling to support ISS operations beyond 2030, and is considering using the recently-delivered Prichal module on the ISS as an initial element of that station – although the loss of the module would not necessarily impede ISS operations if no agreement on extending operations beyond 2030 were to be reached.

ISS from “beneath”, with the damaged thermal radiator clearly visible. The “international” modules are up and to the right, the Russian modules to the lower left. Also visible is the Cygnus automated re-supply vehicle (with the circular blue/gold solar arrays, a Soyuz vehicle just to the left and below it, and a Progress re-supply vehicle beneath the lower left end of the station. Credit: T. Pesquet / ESA / NASA

As it is, the ISS has, since 2000, been visited by 403 individual crewed flights that have delivered 250 people to the station, and it remains a remarkable piece of space engineering and construction.

Just how remarkable was again shown in November 2021, when the Crew 2 mission departed the ISS aboard SpaceX Crew Dragon Endeavour; because as they did so, they took a ride around the ISS taking photos that were released this week.

Captured by ESA astronaut Thomas Pesquet, these images reveal the station in great detail – including what appears to be damage caused by what may have been a debris strike on one of the radiator panels.

They also reveal the stunning complexity of the station’s design from the long truss “keel” that is home to the station’s thermal radiator, vital for carrying away heat, and massive primary solar arrays, vital for providing power, to the “international” modules slung “under” it and focused around the US Harmony module, and the “tail” of the Russian built modules with their own solar arrays. In addition the Soyuz, Progress and Cygnus vehicles docked with the station can also be seen in some of the images.

SpaceX and Rocket Lab Updates

SpaceX Gear-Up and Problems

SpaceX is gearing-up for Starship  / Super Heavy operations, and also to support further crew flights to / from the ISS.

On Friday, December 3rd, the company indicated it is to resume / start work in earnest on new Starship / Super Heavy launch facilities at Kennedy Space Centre. The new facilities will be at Pad 39A, which SpaceX leased from NASA in 2014 in a 20-year agreement, and which has been the home of Falcon 9 and Falcon Heavy vehicles – and will remain so, despite the construction work.

Work on Starship / Super Heavy launch facilities within the Pad 39A launch pad area  – home of all but two of the Apollo lunar missions – in 2019, but the work was quickly halted in favour of the work being carried out at the company’s Boca Chica facilities. The plan is to build facilities of a similar nature to those at Boca Chica, but with improvements learned as a result of that work.

Kennedy Space Centre Pad 39A showing the SpaceX Falcon / Falcon Heavy launch facilities and the location of the Starship / Super Heavy launch facilities, where construction work has now resumed. Credit: Spacenews.com

The same day as SpaceX confirmed work on the Kennedy Space Centre launch facilities for Starship was resuming, NASA announced it was awarding a further three contracts to SpaceX for crew missions to / from the International Space Station (ISS) in addition to those already assigned to both SpaceX and Boeing, in part as a hedge against Boeing continuing to having issues with their CST-100 Starliner crew vehicle, which has yet to complete its demonstration crewed flight test, now due for some time in 2022.

Neither NASA nor Boeing have issued any update on the status of Starliner since October after valve corrosion problems caused the planned crew flight test to be  scrubbed and the vehicle returned to Boeing’s facilities. As such, it appeared unlikely Boeing would gain any additional contracts for ISS flights when NASA issued a request for information in order to award additional contracts for both entire vehicles for dedicated NASA-ISS flights or individual seats on commercial flights. However, this does not preclude them from further contract extensions once Starliner passes certification.

But it is not all good news for SpaceX. The company is encountering issues in scaling-up production of its Raptor engine – vital for the Starship / Super Heavy vehicles. While it is not clear what the problem(s) is / are, the situation appears dire enough for Musk to issue an e-mail to all SpaceX employs that the company could face bankruptcy if the issue(s) is/are overcome.

How serious his warning is, is not clear – he’s issued similar warnings in the past in order to “motivate” staff – and following the e-mail making headlines, he did start stepping back from some of his comments. However, Raptor production is key to the company’s future: SpaceX is banking on a high cadence of Starship / Super Heavy launches each of which will require a minimum of 35 motors per launch – with periodic swap-outs to be expected, even allowing for their reusability.  As it is, Musk has indicated he would like to hit 26 launches by the end of 2022, although it is not clear if this is combined booster / Starship launches (using a mix of 35 or 39 motors) or a mix of booster / Starship orbital attempts and further Starship high-altitude flight tests (the latter only requiring 3 or 6 motors).

Rocket Labs Provide Neutron Update

SpaceX aren’t the only contender in the US reusable launch vehicle Market. The New Zealand-US based Rocket Lab is already working towards partial reusability with their Electron small payload launcher, and CEO and founder Peter Beck recently provide an update on their Neutron medium-lift vehicle, which includes an entire new look to the vehicle.

The updated vehicle will be made of carbon composite materials (with Beck taking a slight dig at the use of stainless steel as adopted by SpaceX and (now) Blue Origin), and will be of a tapered design with a 7-metre diameter base. This shape is designed to reduce heat loads during re-entry into the atmosphere, with the booster standing on a set of fixed legs on landing.

An artist’s rendering of the Neutron rocket, showing the unique petal-like integrated payload fairings opened to allow for the deployment of the upper stage and payload. Credit: Rocket Lab

Nor does it end there. Neutron’s standard payload to low Earth orbit will be 8 tonnes – marking it as an ideal launcher for the smallsat / constellation / rideshare market. However, this can be extended to 15 tonnes  – although this is in a non-reusable format for the vehicle. But perhaps the most unique aspect of the vehicle is the manner in which it carries payloads when operating as a reusable launcher.

Traditional rockets carry their upper stages and payloads on top, with “throw away” aerodynamic fairings protecting the payload through the ascent through the atmosphere. Neutron, however, features fairings that are integrated into the rocket. These will open like petals around the payload / upper stage to allow them to be deployed, then close again to allow the vehicle to maintain the integrity of its shape through the re-entry phase of its flight through to landing.

An artist’s rendering of Neutron making a return to its launch site. Credit: Rocket Lab

Overall, the hope is that by using 3D printing, carbon composites, reducing the vehicle mass – which reduces the stress placed on the motor systems – and offering a design with a return to launch site capability that does not require complex infrastructure to enable re-use, Neutron will provide Rocket Lab with a significant launch capability at extremely low, high-competitive pricing.

Assuming the original plans for Neutron remain true, the vehicle’s first flight could come in 2024, most likely utilising the facilities Rocket Lab has been developing at NASA’s Wallops Island, Virginia, launch centre.

Space Sunday: a DART plus JWST and TRAPPIST-1 updates

NASA’s Double Asteroid Redirection Test (DART) vehicle under thrust as it closes on the asteroid Dimorphos as it orbits Didymos. Credit: NASA

On November 24th, 2021, NASA launched the Double Asteroid Redirection Test (DART) mission, a vehicle aimed at testing a method of planetary defence against near-Earth objects (NEOs) the pose a real risk of impact.

I’ve covered the risk we face from Earth-crossing NEOs – asteroids and cometary’s fragments that routinely zoom across or graze the Earth’s orbit as they follow their own paths around the Sun. We are currently tracking some 8,000 of these objects to assess the risk of one of them colliding with Earth at some point in the future. This is important, because it is estimated a significant impact can occur roughly every 2,000 years, and we currently don’t have any proven methods of mitigating the threat should it be realised. And that is what DART is all about: demonstrating a potential means of diverting an incoming asteroid threat.

Developed as a joint project between NASA and the Johns Hopkins Applied Physics Laboratory (APL), DART is specifically designed to deflect an asteroid purely through its kinetic energy; or to put it another way, by slamming into it, and without breaking it up. Both are important, because by simply slowing an Earth-crossing NEO along its orbit, we give time for Earth to get out of its way; then, by not causing it to break, then we avoid the risk of it becoming a hail of shotgun pellets striking Earth at some point further into the future.

The DART mission. Credit: NASA

The target for the mission is a binary asteroid 65803 Didymos (Greek for “twin”), comprising a primary asteroid approximately 780 metres across, and a smaller companion called Dimorphos (Greek: “two forms”) caught in a retrograde orbit around it, with both orbiting the Sun every 2 years 1 month, periodically passing relatively close to Earths, as well as periodically grazing that of Mars.

Discovered in 1996 by the Spacewatch sky survey the pair has been categorised as being potentially hazardous at some point in the future. At some 160m across, Dimorphos is in the broad category of size for many of the Earth-crossing objects we have so far located and are tracking, making it an ideal target.

DART actually started as a dual mission in cooperation with the European Space Agency (ESA) called AIDA – Asteroid Impact & Deflection Assessment. This would have seen ESA launch a mission called AIM in December 2020 to rendezvous with Didymos and enter orbit around it in order to study its composition and that of Dimorphos, and to also be in  position to observe DART’s arrival in September 2022 and its impact with the smaller asteroid.

However, AIM was ultimately cancelled, leaving NASA to go ahead with DART. To reduce costs, NASA initially looked to make it a secondary payload launch on a commercial rocket. But it was ultimately decided to use a dedicated Falcon 9 launch vehicle for the mission, allowing it to make its September 2022 rendezvous with Dimorphos.

An artist’s impression of DART and the LICIACube cubesat, with Dimorphos and Didymos in the background. Credit: NASA

In order to impact the asteroid at a speed sufficient to affect its velocity, DART needs to be under propulsive power. It therefore uses the NEXT ion thruster, a type of solar electric propulsion that will propel it into Dimorphos at a speed of 6.6 km/s – which it is hoped will change the velocity of the asteroid by 0.4 millimetres a second. This may not sound a lot, but in the case of hitting an actual threat whilst it is far enough away from Earth, it is enough to ensure it misses the planet when it crosses our orbit.

This motor is powered by a deployable solar array system first deployed to the International Space Station (ISS). However, what is most interesting about these solar panels is that a portion of them is configured to demonstrate Transformational Solar Array technology that can produce as much as three times more power than current solar array technology and so could be revolutionary should it reach commercial production.

Accompanying DART is Light Italian CubeSat for Imaging of Asteroids (LICIACube), a cubesat developed by the Italian Space Agency, and which  will separate from DART 10 days before impact to acquire images of the impact and ejecta as it drifts past the asteroid. To do this, LICIA Cube will use a pair of cameras dubbed LUKE and LEIA.

As the cubesat is unable to orbit Didymos to continue observations, ESA is developing a follow-up mission called Hera, Comprising a primary vehicle bearing the mission’s name, and two cubesats, Milani and Juventas, this mission will launch in 2024, and arrive at the asteroids in 2027, 5 years after DART’s impact, to complete a detailed assessment of the outcome of that mission.

 ISS Gets a New Module

On November 26th, 2021, a new Russian module arrived at the International Space Station (ISS).

The Prichal, or “Pier,” module had been launched by a Soyuz 2.1b rocket out of the Baikonur Cosmodrome in Kazakhstan two days earlier. Mounted on a modified Progress cargo vehicle, the module was successfully mated with the Nauka module which itself only arrived at the station in July, at 15:19 UTC.

Carried by a Progress vehicle, the Prichal module approaches the ISS. Credit: NASA TV

The four-tonne spherical module has a total of six docking ports, one of which is used to connect it with Nauka, leaving five for other vehicles. However, when first conceived, the module was also intended to be a node for connecting future Russian modules.

But since that time, the Russian space agency, Roscosmos, has abandoned plans to support the ISS with additional modules. Instead, with relations with the west continuing to cool and the ongoing rise in nationalism in Russia, the agency has indicated it plans to orbit its own space station. This being the case, Prichal is viewed as the final element in the Russian segment of ISS, and potentially the first of the new station.

Unlike the arrival of Nauka in July, Prichal managed to dock with the ISS without the additional “excitement” of any thruster mis-firings. Now, the Progress carrier vehicle will remain attached to the module through until December 21st, allowing time for the Russian cosmonauts on the station to carry out a spacewalk to attach Prichal to the station’s power systems. Once it has been detached, the Progress vehicle will be set on a path to burn-up in the Earth’s atmosphere.

Visible over the top of a Progress resupply vehicle, the Prichal module and its Progress carrier can be seen docked with the nadir port of the Nauka module. Credit: NASA TV

As well as expending the docking facilities at the ISS, Prichal delivered some 2.2 tonnes of cargo and supplies to the station. The module will formally commence operations in its primary role in March 2022 with the arrival Soyuz MS-21.

Continue reading “Space Sunday: a DART plus JWST and TRAPPIST-1 updates”

Space Sunday: Debris, Artemis delays, SpaceX Plans

The International Space Station. Credit: NASA

Anyone  who follows news on space activities will be aware that on November 15th, Russia carried out the test of an anti-satellite(ASAT) missile system that resulted in the destruction of a defunct Soviet-era electronic signals intelligence (ELINT) satellite – and required the crew of the International Space Station (ISS) to move to their respective Earth return vehicles (Soyuz MS-19 and Crew Dragon Endurance) due to risk of being hit by the debris.

To be clear, ASAT systems are not new. The United States and Russia (/the Soviet Union) have between them spent decades developing and testing such systems (the last successful US test was in 2006, with both the USAF and USN having significant ASAT capabilities), and China and India have also demonstrated ASAT systems as deliberate demonstrations of force.

However, the November 15th test by Russia was somewhat different. Occupying a polar orbit at an average altitude of around 470 km, the 2.2 tonne Kosmos 1408 as both a substantial target risking a massive debris cloud, and routinely “passed over” the orbit of the ISS (ave 420 km), putting it at clear risk.  Nor did Russia give any forewarning of the test.

Instead, the US Space Command only became aware of what had happened after they tracked the missile launch all the way to impact – and then started tracking the cloud of debris. This presented no danger to the ISS in its first orbit, but tracking showed it was a very define threat to the station on its 2nd and 3rd orbits, prompting mission controllers to order the ISS crew to start shutting down non-essential operations and sealing-off hatches between the various science modules.

Some 15 minutes before the second pass of the debris field across the station’s orbit, controllers called the station to order the US / European astronauts in the “US section” of the station to secure all remaining hatches to minimise the risk of explosive decompression in the event of a hit, and evacuate to Crew Dragon Endurance both in case an emergency undock was required, and because it presented a significantly smaller target for any stray debris travelling at 28,000 km. The controllers also noted the Russia cosmonauts on the station were engaged in similar actions, and would be retiring to their Soyuz MS-19 vehicle.

In all, the crews were restricted to their Earth return vehicles for somewhere in the region of 3-3.5 hours before it was considered the most significant risk of and impacts had for the most part passed. Even so, it was not until November 17th that all hatches on the ISS were unsealed to allow normal operations to resume throughout all modules. Currently, NASA is still monitoring the situation and may postpone  a spacewalk planned for November 30th as a result of the debris risk.

Ironically, on November 11th, the ISS had to raise its orbit somewhat using the thrust from a docked Progress re-supply vehicle in order to completely remove the risk of debris from 2007 Chinese ASAT weapon test striking it, 14 years after the test.

In these images, Kosmos 1408 can be seen ringed on the left. The image on the right highlights some of the larger clumps and pieces of debris left after the kinetic “kill” by the Russian ASAT weapon. Credit: Numerica and Slingshot Aerospace

Following the test, Russia attempted to play down the risk, stating it posed “no threat” to other orbital vehicle, crewed or uncrewed – a less than accurate statement. Analysis of the debris cloud by both US Space Command and civilian debris tracking organisations reveals much of the cloud will remain a threat for the next several years – if not decades – as the convoluted nature of orbital mechanics and impact velocity gradually increases the cloud’s orbital altitude for a time as it continues to disperse, putting satellites in higher orbits at risk – particularly the likes of the SpaceX Starlink and the OneWeb constellations.

Russia has demonstrated a deliberate disregard for the security, safety, stability, and long-term sustainability of the space domain for all nations. The debris created by Russia’s DA-ASAT will continue to pose a threat to activities in outer space for years to come, putting satellites and space missions at risk, as well as forcing more collision avoidance manoeuvres.

– U.S. Army General James Dickinson, Space Command.

Some 1500 individual pieces of debris from the test are of a trackable size, with potentially tens of thousands more that are too small to be identified. Tim Flohrer, head of the European Space Agency’s (ESA) Space Debris Office noted that the test means that debris avoidance manoeuvres made by satellites in the 400-500 km orbit range may increase by as much as 100% for the next couple of years before the threat is sufficiently dissipated. One of the biggest risks posed by this kind of action is the Kessler Effect (or Kessler Syndrome), wherein debris from one impact causes a second impact, generating more debris, and so setting off a chain reaction.

Given its size and orbit, there is simply no way Russia was unaware of the threat posed by Kosmos 1408 to low-orbit vehicles – particularly crewed vehicles and facilities – if the test was successful. As such, some have seen it as irresponsible due to the impact it could have on general orbital space operations, while others see it as a sign of aggressive intent on Vladimir Putin’s part.

Currently, Russia has not indicated as to whether this was a one-off incident (a previous test in 2020 missed its target), as has been the case in the US, Chinese and Indian tests, or if it could be a part of a wide series of tests. If the latter, then international relationships are liable to be further strained.

NASA OIG: No Moon Landing Before 2026

Following NASA’s indication that the first Artemis lunar laying won’t come “earlier” that 2025, the agency’s own Office of Inspector General (OIG) has thrown a bucket of realism over the entire project, pretty much confirming comments made in this blog concerning vehicle development timelines, whilst also questioning the sustainability of the programme.

Having carried out an extensive audit of the programme, OIG has issued a 73-page report which critiques the current Artemis programme and time frames, although it can only offer suggestions on what might be done, not instigated changes.

Artemis 3 mission (1): the OIG report outlines the first mission to return 2 humans to the Moon – Artemis 3 – as designed by NASA / SpaceX. This uses the SpaceX Starship HLS – which will now be supported by a SpaceX “fuel depot” (a modified Starship hull) sitting in Earth orbit, and frequently refuelled by between 4 and 8 additional Starship vehicles – and the Orion MPCV for transporting a crew of 4 forth and back between Earth and the Moon. Credit: NASA / NASA OIG

It terms of the development of the Human Landing System (HLS), required to get crews to / from the surface of the Moon, the report follows what has been noted in Space Sunday: the 4-year development time frame is simply unrealistic. In particular, the report notes that even in partnerships such as the Commercial Crew Programme, NASA tends to require around 8.5 years to develop a new spaceflight capability – more than double that allocated for HLS (in fact, NASA / SpaceX believed Crew Dragon could be developed and ready for operation in 6 years – it took 10). It also indicates that while a reliance on a single vehicle design / contractors (currently SpaceX) reduces costs, it also places further risk on the entire programme time fame and operations.

Further, the OIG report states that realistically, the first flight of the first Space Launch System (SLS) rocket is unlikely to take place until mid-2022; somewhat later than NASA is still projecting (early 2022). It goes on to point of that given the delays on Artemis 1, it is unlikely that the Artemis 2 mission scheduled for 2023 and which will fly a crew around the Moon and back to Earth in a manner akin to Apollo 8 is unlikely to be ready until mid-2024, simply because NASA plan to re-use elements from the Artemis 1 Orion vehicle in the Artemis 2 Orion, and these will need a comprehensive post-flight examination and refurbishment.

Artemis 3 (2): The report shows the rendezvous with the HLS for the surface mission (2 crew), and leaps ahead to future missions and the establishment of the Lunar Gateway station. What is left unclear is whether the HLS vehicle will be reused (returning it to be refuelled) or simply abandoned (marking it as a waste). Credit: NASA / NASA OIG

Beyond this, the report also raises concerns whether the space suit required for lunar operations – the Exploration Extravehicular Mobility Unit (xEMU) – will actually be ready for operations in 2025, issues in technical development, and in NASA flip-flopping between in-house and commercial contract development of the suit being pointed to as reasons for the delays.

The biggest critique in the report, however, is related to costs. The OIG report notes that at current levels of expenditure, Artemis will cost US $93 billion by 2025/26, with the first four Artemis SLS / Orion launches (Artemis 1 through 4) alone costing US $4.1 each – and this estimate does not include the development of the actual HLS system or the costs to launch / operate it.

NASA OIG estimates the Space Launch system will cost US $4.1 billion per launch for the 1st four flights, with total Artemis development and infrastructure costs (excluding HLS) being some US $93 billion by 2026. Credit: NASA

To reduce these costs, OIG suggests looking to alternate launch vehicles  to deliver crews to lunar orbit, but NASA management has already rejected such ideas and had refuted OIG’s cost analysis and call for most closely accounting for expenditure. However, it has accepted the report’s other concerns; although it will take time to see if this translates into any form of re-assessment of the programme as a whole.

Continue reading “Space Sunday: Debris, Artemis delays, SpaceX Plans”

Space Sunday: throwing things into space; NASA & SpaceX round-ups

A conceptual model of a SpinLaunch coastal launch facility with the vacuum accelerator exposed – the launch vehicle is located at the outer end of the black rotating arm. Credit: SpinLaunch

Up until now, the only means to get payload into space has been through chemical propulsion – rockets. And while they are not entirely efficient, they do work. However, if an American company gets its way, launching small payload into orbit could see the core part of their rocket replaced by a vacuum accelerator. Think of whirling an object around at speed on the end of a piece of string and then releasing it vertically, and you’ll get the picture.

The idea may sound bonkers, but it is precisely what US company SpinLaunch is planning to do.

They propose building a 100-metre diameter vacuum accelerator that, over the course of 90 minutes can accelerate an 11.2 tonne launch system up to a speed of Mach 5 before releasing it to travel along a launch tube and into the air. This velocity should be sufficient to propel the launch vehicle – comprising an aerodynamic aeroshell within which is placed a two-stage rocket carrying a 200 Kg payload.

The SpinLaunch payload vehicle, showing the outer dynamic shell, the two-stage rocket vehicle, and a pair of small satellites as the payload. Credit: SpinLaunch

On reaching a altitude matching that of a Falcon 9 first stage, the aeroshell would then split open, releasing the rocket to power itself and its payload on to orbit. Sound this work, it could reduce the cost of placing small payloads into space by around 80%, and allow for multiple launches from a single facility per day, if required.

To prove the idea works, SpinLaunch has constructed a one-third scale version of the accelerator, and on October 22nd, used it – operating at around 20% of rated output – to propel a 3-metre long ballistic projectile “tens of thousand of feet” into the atmosphere. According to SpinLaunch, the test was the first of 30 to take place over the next 6 months before they start work on construction on what they claim will be the first of a number of full-scale launch facilities at various points on the American coast.

That said, there are some significant technical challenges. Spinning at a maximum speed of 450 rpm, the system will subject the launcher and its payload to a peak dynamic load of 10,000 G; that’s a lot for the more sensitive part of the rocket motor to handle. More particularly, when it breaks the vacuum seal at the end of the launch tube, it will be travelling at Mach 5 – and slamming straight into the densest part of the atmosphere, again placing a massive load on it and its payload, as well as generating a lot of frictional heat as a result of its passage through the air. And that’s without considering the challenges in translating the spin of the accelerator into linear motion for the launch vehicle such that it can smoothly and successfully exit the launch tube, etc.

Even so, SpinLaunch appear to be carrying out the right amount of research – even if they are somewhat circumspect in addressing specific technical questions. As such, it will be interesting to see where things lead.

SpaceX Starship Update

With the public phase of the FAA’s Programmatic Environmental Assessment (PEA) of the Starbase facilities at Boca Chica now closed and the agency putting together its final version of the report, SpaceX has been moving ahead with site and vehicle development.

Most notably with the former has been work on erecting the framework of the new Wide Bay facility that could allow work to progress on up to four Super Heavy / Starship vehicles at a time, massively increasing the ability for the company to stack vehicles elements together. At the same time, in the current 2-vehicle High Bay, Booster 5 is nearing stack completion, and work has resumed on Starship 21.

The nose cone section of Starship 21, due to be the second orbit-capable test vehicle, is mounted onto the upper section of the vehicle. Note the thermal protection system already installed on both sections. Credit: BocaChicaGal / NASASpacelfight.com
Booster 5 includes significant differences to Booster 4, which is now sitting on a hard stand at the launch facilities as work continues on the launch platform there. Most notably, elements of the booster are emerging from the fabrication facilities in a completed state than was the case with Booster 4 – which even now, is still awaiting various elements of aerodynamic casing, etc., to protect various parts during its ascent and decent through the atmosphere. Similarly, Starship 21 is showing differences in construction to Starship 20, most notably in having sections fitted with their thermal protection blankets and tiles prior to being stacked together.

At the launch site, work has continued in getting the catching mechanism on the launch support tower properly rigged to the cable system and massive winches that will allow it to move up and down the tower for eventual stacking and catching operations. A short distance away, Booster 4 has started to receive the protective skirting around its base to keep the more sensitive parts of its ring of outer engines safe from the flames and heat of ignition, as well receiving the last of its 29 Raptor engines.

However, the biggest new in recent weeks came with the pre-burn and static fire test of all six Raptor motors on Starship 20. These came almost back-to-back on November 12th, with the pre-burn (a kind of clearing the rocket engines’ throats) coming first and lasting just under a second. Then, around an hour later came a 2-second firing of the vehicles’ 3 sea-level engines and the 3 vacuum rated engines.

As with the last static fire test (with just 3 motors), some of the vehicle’s thermal protection tiles were blown clear, with a good number coming off lower down the vehicle when compared to the 3-engine test. Although brief, the static fire gave a small taste of the amount of noise that will be generated when Booster 4 ignites all 29 of its motors and then sustains their thrust through an actual launch.

Whether or not this launch, which will hopefully carry Starship 20 aloft, will come before the end of the year still hangs in the balance, with a lot riding on the outcome of the FAA’s final version of their PEA.

NASA Updates

Hubble Partially Recovered

On October 25th, the Hubble Space Telescope (HST) entered a “safe” mode, shutting down all science operations, the result of “multiple losses of synchronisation messages” – messages designed to coordinate how the various science instruments on HST receive and transmit data to / from the telescope’s primary computer system. While of concern, and possibly a little more frequent than initially diagnosed, the issue left Hubble in good health and engineers confident science operations could be recovered.

During the week, further tests were carried out that gave NASA the confidence to return the Advanced Camera for Surveys (ACS) to operational status on November 7th. The coming week will see the completion of additional tests with the hope that the more sensitive instruments on the telescope can be returned to operational status.

Artemis 3 Moon Landing Now “No Earlier” Than 2025

In a move that should have surprised no-one interested in space exploration, NASA has pushed back their return to the Moon to at least 2025, citing four reasons: the disagreement with Blue Origin over the contract for the Human Landing System (HLS), delays due to COVID working restrictions in 2020, Congress “failing” to fund HLS development and the Trump Administration placing unrealistic time frames on the programme.

Of the four reasons, the last is perhaps the most accurate: you simply cannot lop 4 years off of a programme and expect it to succeed (simply so you can take the credit as theoretically still be in office), without a commensurate increase in budget to allow NASA to achieve the required goals in the reduced time frame. On the other hand, blaming Congress isn’t entirely honest. In 2019, NASA stated they need $5+ billion for HLS development – but only requested less than $2 billion – hoping they could take money from the infrastructure bill and put into HLS – which Congress refused to allow.

The Artemis 1 mission profile. Credit: NASA – click for full size

As it is, the “no earlier” statement is standard NASA parlance when they do not wish to commit to a specific data as yet, in this instance it is perhaps indicative that Artemis 3 could slip to 2026. A lot is riding on the Artemis 1 mission, which has already slipped to February 2022, being the first flight of the Space Launch System (SLS) rocket critical in getting crews to the Moon. Should this first (uncrewed) flight reveal issues with either SLS or the Orion crew vehicle, then it is likely to seriously impact the entire Artemis timeline.

Similarly, while Elon Musk claims SpaceX will be able to land a crewed Starship HLS vehicle on the Moon in 2023, his time-frames tend to be over-optimistic. Also, there are some major questions around the Starship HLS that have yet to be answered; plus SpaceX are working to NASA’s crew safety requirements, not their own, which can (rightly, given crew safety is at stake) cause additional overheads on a development programme.

Crew Dragon: 4 Down, 4 Up

After uncooperative weather mixed things up, and caused delays, SpaceX Crew Dragon Endeavour has returned to Earth, bringing with it NASA astronauts Shane Kimbrough and Megan McArthur, ESA astronaut Thomas Pesquet and JAXA astronaut Aki Hoshide, who were all just a few hours short of spending 200 days aboard the space station.

Departure and splashdown took place on November 8th, with only the late-opening of one of the 4 main parachutes preventing the return from being perfectly textbook.

A remarkable shot captured by the NASASpaceflight.com team showing Crew Dragon Endeavour forming a bright star as it flies through re-entry high above the SpaceX Starbase at Boca Chica. In the foreground is the launch support tower for Super Heavy / Starship. Credit: NASASpaceflight.com

The departure left a lone US astronaut on the ISS along with two Russian cosmonauts. Mark Vende Hei arrived on the station aboard Soyuz MS-18 in April 2021. In September he and cosmonaut Pyotr Dubrov, who also flew to the station on MS-18, had their stay on the station extended through until March 2022. This means that Vende Hei will take the record for the longest individual space flight by an American – 353 days.

However, on Thursday, November 11th, he was joined by NASA colleagues Raja Chari, Tom Marshburn, and Kayla Barron, who arrived at the ISS along with ESA astronaut Matthias Maurer aboard Crew Dragon Endurance as the Crew 3 mission. They had launched earlier on Thursday, November 11th (Late on Wednesday, November 10th, US time), marking the maiden flight of the third Crew Dragon vehicle to enter service. They will remain aboard the station for 6 months.

Further Push to Retire SOFIA

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), the 2.5 metre telescope flown aboard a converted 747 SP aircraft has been recommended for “termination” by the committee that originally prioritised it.

The astrophysics decadal survey committee, which originally pushed for the airborne observatory in both 1990 (when it was not funded) and 2000 (when it was, although technical issues meant it did not enter service until 2014), now believe it is not worth the annual US $85 million cost of operating it and a “lack” of “scientific productivity”.

SOFIA: the Stratospheric Observatory for Infrared Astronomy, a flying observatory, capable of flying high enough to put it above the majority of atmospheric interference – but again threatened with cancellation. Credit: NASA

The “lack of productivity” references the fact that in its first 6 years, SOFIA has only generated 178 scientific papers that were cited 1,242 times, far less than other, more specialised observatories like the Transiting Exoplanet Survey Satellite (TESS); however, supporters of SOFIA note that the figures ignore the fact that in the last 12 months there has been a 59% increase in SOFIA papers, and the observatory is gaining more use in a variety of roles.

NASA has twice tried to cancel SOFIA, but in 2020 Congress provided sufficient funding for operations to through 2021 and into 2022. Currently, the House has also provided funding for the observatory until the end of 2023, although the Senate has yet to make a determination on funding.

Blue Origin Space Tourist Killed

Glen de Vries, who flew with William Shatner, Chris Boshuizen and Audrey Powers, a Blue Origin vice president on the second passenger-carrying Blue Origin New Shepard sub-orbital flight, was one of two people on a Cessna 172 aircraft that crashed in New Jersey on November 11th.

Glen De Vries aboard New Shepard NS-18 capsule prior to launch

De Vries, a biomedical entrepreneur and self-described “space nerd”, paid an undisclosed sum for the flight, and had been giving talks and presentations on his experience since his return to Earth.

At the time of his death, he had been flying with Thomas Fischer from Essex County Airport in Caldwell, N.J. Both men were well-qualified pilots – Fischer also being a flight instructor – but it is not clear who was flying the aircraft. Emergency services were alerted after the pair failed to arrive at their destination, and the wreckage of the aircraft were subsequently found  in a heavily wooded area near Hampton Township, about 64 kilometres northwest of New York City. At the time of writing, the cause of the crash remains undetermined.

We are devastated to hear of the sudden passing of Glen de Vries.  He brought so much life and energy to the entire Blue Origin team and to his fellow crewmates. His passion for aviation, his charitable work, and his dedication to his craft will long be revered and admired.

Blue Origin statement on the death of Glen de Vries

 

Space Sunday: a little astronomy and a round-up

Artist’s conception of a magnetar — a super dense neutron star with an extremely strong magnetic field. In this illustration, the magnetar is emitting a burst of radiation. Credit: Sophia Dagnello, NRAO/AUI/NSF

Fast radio bursts (FRBs) are one of the strangest phenomena we’ve yet discovered in the cosmos – and they are also one of the most recent, the first one only being detected in 2007.

FRBs produce pulses in the radio part of the electromagnetic spectrum that last just a few thousandths of a second but produce as much energy as the sun does in a year. They are believed to originate within magnetars, a kind of ultra-dense neutron star (itself the collapsed remnants of a star) with an exceptionally strong magnetic fields which can warp their behaviour; however, this has yet to be confirmed.

Most FRBs have been detected originate in galaxies other than our own, and are very mixed in nature. Some FRBs emit energy just once but others can do so in repeated bursts. The thinking is that their intense bursts of energy is the result of some complex interaction between a magnetar’s massive magnetic field – trillions of times more powerful than Earth’s – and the outer layers of the neutron star itself, causing a massive explosion we later detect as radio waves.

One FRB that is known to recurring bursts is called FRB 121102, and is located in a dwarf galaxy 3 billion light-years from Earth. It was selected as a candidate for study using China’s  massive Five-hundred-metre Aperture Spherical radio Telescope (FAST), which only became operational in 2020. The hope was study of FRB 121102 would reveal the secrets of these strange objects, including their source and cause. Instead, the study has actually deepened the mystery.

The Five-hundred-metre Aperture Spherical radio Telescope (FAST) in China, the world’s largest (2.25 times larger than the former Arecibo Observatory radio telescope) and most sensitive radio telescope and nicknamed “Heaven’s Eye”

Prior to FAST turning its attention on FRB 121102, recorded observations by the likes of (the now defunct) Arecibo radio telescope suggested it gave off bursts of 10 radio pulses on a non-regular basis. However, FAST is so sensitive, found FRB 121102 can generate up to 117 pulses per hour, with some just a few thousandths of a second apart, with 1,652 bursts detected in the first 60 hours of observations!

Exactly how it can do this remains a mystery – but it suggests that the current theory of magnet field / star “surface” interactions is incorrect. Such interactions would generate violent outbursts of matter from the magnetar, and these would have to collapse to prevent them interfering with further bursts – and a few thousands of a second is too short a period in which this could happen.

No direct conclusions can be drawn from the study of FRB 121102; the international team behind it stating they now need to use FAST to study other repeating FRBs to see if they can find similar “hidden” bursts from them, in order that a more complete picture might start to be built up as to what might be happening, why, and how.

 The “‘Fridge” That Skimmed Earth

I’ve often written about NEOs, or near-Earth objects – chunks of rock in a range of sizes from just a few metres through to a few kilometres  – that orbit the Sun in a manner that means that periodically cross Earth’s orbit or can pass relatively close to us. Such is the threat posed by these objects should one of the large ones actually collide with Earth, considerable effort has been put into finding and tracking them, using their close passages to Earth to better track and predict their orbits in years to come.

As a result, many of the large NEOs have indeed been located and tracked; but there are still many hundreds, if not thousands, which, while not threatening all of civilisation on the planet, could still do much to totally ruin people’s day were they to enter the Earth’s atmosphere and explode under air pressure or even survive and strike a centre of population.

October 24th, 2021 saw a small reminder of this threat, when a chunk of rock about the size of a refrigerator and dubbed Asteroid 2021 UA1, skimmed past Earth, passing just 3,000 km above Antarctica. While the rock was too small to cause any real damage, had it entered the atmosphere, it would likely have completely burned up, it was not actually spotted until it was moving away from Earth once more, its approach having been lost in the glare of the Sun – hence why it acted as a reminder of the threat poised by larger NEOs – that we might not actually see them before them become a problem.

This is what happened in 2013, when a cometary fragment roughly 20 m across entered the Earth’s atmosphere to explode at an altitude of 26 km over the the Russian oblast of  Chelyabinsk. The blast yield of explosion was 400–500 kilotons of TNT, with the shockwave it generated damaging some 7,200 buildings in six cities across the region and injuring more than 1,500 people.

The passage of Asteroid 2021 UA1 is also a timely reminder that later in November, NASA plans to launch the Double Asteroid Redirection Test (DART), an attempt to test a method for diverting asteroids by hitting them with high-speed remote-controlled vehicles, and I’ll have more of that mission in an upcoming Space Sunday report.

Selected Round-Up

Hubble Remains in Safe Mode

As I noted in my last Space Sunday update, the veritable Hubble Space Telescope (HST) entered a “safe” mode intended to protect its science capabilities on October 25th, 2021. With science activities suspended, the instruments are said to be in “good health”. However, in providing an update to the situation, NASA revealed HST actually suffered two glitches in relatively short order.

The Hubble Space Telescope, seen in 2002. Credit: NASA

On October 23rd, the telescope’s science instruments issued an error code indicating the loss of an automated synchronisation message issued by the main computer to provide timing information to the science instruments, allowing them to properly respond to commands. This issue appeared to be corrected when a command was sent to the science instruments ordering them to reset; however, the October 25th issue appears to be related, in that “multiple losses of synchronisation messages” were reported immediately prior to the safe mode being triggered.

Right now, Hubble engineers have no idea what triggered the loss of the messages, and the focus is on trying to obtain further data from HST so a more proper diagnosis of what occurred, and what is required to bring Hubble back on-line.

Continue reading “Space Sunday: a little astronomy and a round-up”

Space Sunday: space stations, telescopes and images

A conceptual image of the completed Orbital Reef space station, with a mix of rigid and inflatable additional modules, and a Dreamchaser Cargo spaceplane docked to the right, and two Boeing CST-100 Starliners docked on the left. Credit: Blue Origin / Sierra Space

October 25th, 2021 saw an announcement that caught much of the space media by surprise during the proceeds of the 72nd International Astronautical Congress in Dubai, when Jeff Bezos’ Blue Origin and Sierra Space, the space development arm of the Sierra Nevada Corporation (SNC), revealed they plan to lead a multi-corporate venture to establish a commercial space station in Earth orbit by 2030.

Orbital Reef, as the facility is to be called, is intended to see the consortium led by the two companies establish the basics for the station by the later 2020s, allowing for a potential transition of orbital operational from the International Space Station (ISS) to Orbital Reef by the time the ISS is retired in 2030.

Under the partnership, Blue Origin will develop large-diameter core modules and utility systems, as well as provide launch services using its still-to fly New Glenn heavy lift launch vehicle (HLLV), whilst Sierra Space will provide additional inflatable modules for the facility, and use its Dream Chaser cargo space plane for resupply missions, and (at some point) the original crewed version of the space plane to transfer personnel to / from the station.

Conceptual rendering of Genesis Engineering Solutions “single person space vehicle”. Credit: Genesis Engineering Solutions

Other companies involved in the project include Boeing, who will supply a science module for the station provide their CST-100 Starliner crew vehicle for personnel transfers and provide all ground-based systems operations and support for the station, and Genesis Engineering Solutions will provide a “single person space vehicle” that is already being called the “space pod” for on-obit operations around the station in situations where “suitless” EVAs are desirable.

Blurb for the station states it will be used for a variety of roles: commercial ventures, research across a number of fronts (with Arizona State University leading a consortium of 14 international universities that plan to participate in the research work) and – inevitably – a vacation destination for those with deep pockets.

A promotional video for the station shows it have a long, pressured core module, complete with large windows, together with fore-and-aft docking ports for visiting space vehicles, and multiple port along its sides for the addition of permanent or temporary modules, which can also have their own docking facilities. However, this is said to be the “final” configuration of the station, complete with a multi-array solar power system; the initial “baseline” facility will be far smaller and more modest.

The completed station will be positioned at 500 km altitude – somewhat above the ISS’s nominal 475 km – and will be capable of supported up to 10 people at any one time, with 830 cubic metres of usable internal space – marking it as slightly smaller than the ISS – although this can, as noted, be expanded through the use of additional modules.

The announcement comes as one of several offered in response to NASA’s Commercial LEO Destinations programme, which will select up to four proposal for commercial facilities to replace the ISS, and finance the initial R&D ins each, with further funding to cover certifying the stations for use by NASA astronauts. However, both Sierra Space and Blue Origin have indicated they plan to move ahead regardless of any NASA seed funding.

A critical factor for the project will be Blue Origin’s New Glenn rocket. Development of this initially commenced as a design study in 2012, with the project formally announced in 2016. However, unlike the development of the SpaceX Starship / Super Heavy (which started development at the same time as New Glenn), it has yet to fly, and has seen a number of shifts in direction.

Like SpaceX’s Falcon 9 core stage and their Super Heavy booster, the first stage of New Glenn is intended to be reusable. However, earlier in 2021, the company announced plans to accelerate the development of a reusable upper stage, code-named Jarvis which – in grabbing a leaf from the SpaceX book of how to do things – will be in part be of a stainless steel construction. Because of this, coupled with issues experienced in developing the vehicle’s primary engine, the BE-4, the first flight of New Glenn most likely will not take place until very late in 2022, or early 2023, some three years behind the original target date.

Dreamchaser Cargo spaceplane and external unpressurised cargo module / power “trunk”. This craft is due to start flying to the ISS in 2022, and would be used to fly resupply missions to Orbital Reef. Credit: Sierra Space / SNC

While timeline slips in any developing project are to be expected (just look at NASA, or indeed, “Elon Time” vs actual time with SpaceX projects), the pace of development with New Glenn does question whether Blue Origin can meet a 5-7 year timeline to provide the core of a space station. By contrast, Sierra Space is due to start flying their Dreamchaser Cargo vehicle on resupply flights to the ISS in 2022, and prior to losing on a contract to fly a crewed variant of the vehicle to carrying astronauts to / from the ISS as part of NASA Commercial Crew Programme, SNC has continued to maintain research into a crewed version of the vehicle.

Other entities / consortiums throwing their hats into the ring to provide commercial orbital facilities include Axiom Space, with plans – as noted in past Space Sunday articles – to fly at least one module to the ISS in the mid-2020s, with the planes to use the module(s) it flies to the ISS as the core of a new station as ISS reaches its end-of-life at the end of the 2020s. Another consortium, Nanoracks, Voyager Space Holdings and Lockheed Martin, announced plans to fly a much more modest space station, Starlab. Utilising an inflatable module and core docking / power facility, Starlab would have an internal volume of 340 cubic metres and would be capable of supporting up to 4 people at a time.

Hubble Suffers Further Glitch

The Hubble Space Telescope (HST), the thirty-year-old veteran of orbital space science, suffered a further operational glitch on Monday, October 25th, unexpectedly switching itself into a “safe” mode that has suspended all science operations.

The switch-over happened after Hubble experienced synchronisation issues with its internal communications”; however, the telescope is reported to otherwise be in good health. This is the second time this year the telescope has switched to a safe mode – in summer an issue with the primary payload computer that took a month to diagnose and rectify, gave rise to concerns over HST’s future – although this issue is not as serious, but there is currently no estimate as to when normal operations might be resumed.

While it may not be considered serious, this latest issue is, however, indicative of HST’s advancing years and the fact that it was last serviced in 2009, so sadly, elements aboard it will be approaching their end-of-life – although it is hoped the telescope will be able to remain operation through until the late 2030s.

Continue reading “Space Sunday: space stations, telescopes and images”