Space Sunday: Artemis 2 and a Blue Moon lander

An infographic outlining the Artemis 2 mission, during to take place in the first quarter of 2026. Credit: CSA

2026 is set to get off to an impressive start for US-led ambitions for the Moon, with the first three months intended to see the launch and completion of two key missions in the Artemis programme.

In fact, if the principal players in both missions get their way, the missions could be completed before the end of February 2026 and between them signal the opening of the gates that lead directly to the return of US astronauts to the Moon in 2028. Those two missions are the flight of the Blue Origin Pathfinder Mission to the lunar surface, and the first crewed flight to the vicinity of the Moon since the end of the Apollo era: Artemis 2.

Blue Moon Pathfinder

As I’ve previously noted in this column, Blue Moon Pathfinder is intended to fly a prototype of the Blue Moon 1 cargo lander to the Moon’s South Polar Region to demonstrate key elements and capabilities vital to both the Blue Moon Mark 1 and its larger, crew-capable sibling, Blue Moon Mark 2.

These goals include: the firing / re-firing of the BE-7 engine intended for use in both versions of Blue Moon; full use of the planned cryogenic power and propulsion systems; demonstration of the core avionics and automated flight / landing capabilities common to both Blue Moon Mark 1 and Blue Moon Mark 2; evaluate the continuous downlink communications; and  confirm the ability of Blue Moon landers to guide themselves to a targeted landing within 100 metres of a designated lunar touchdown point.

An artist’s rendering of the Blue Moon Mark 1 (foreground) and larger Blue Moon Mark 2 landers on the surface of the Moon. Credit: Blue Origin

Success with the mission could place Blue Origin and Blue Moon in a position where they might take the lead in the provisioning of a human landing system (HLS) to NASA in time for the Artemis 3 mission, currently aiming for a 2028 launch. A similar demonstration flight of Blue Moon Mark 2 is planned for 2027, involving the required Transporter “tug” vehicle needed to get Blue Moon Mark 2 to the Moon. If successful, this could potentially seal the deal for Blue Moon in this regard, given both they and SpaceX must undertake such a demonstration prior to Artemis 3 – and currently, SpaceX has yet to demonstrate the viability of any major component of the HLS design beyond the Super Heavy booster.

Of course, as others have found to their cost in recent years, making an automated landing on the Moon isn’t quite as easy as it may sound, so the above does come with a sizeable “if” hanging over it.

A comparison between the the Apollo Lunar Module, Blue Moon Mark1 and Blue Moon Mark 2. Note that the bulk of the latter comprises the massive Liquid hydrogen (LH2) tank (at the top, with the four large thermal protection / heat dissipation panels needed to help keep the propellant in a liquid form liquid), with the liquid oxygen (LOX) tanks between it and the crew module at the base of the vehicle. Credit: NASA / Blue Origin / David Leonard

The Blue Moon landers are between them intended to provide NASA with a flexible family of landing vehicles, with Blue Moon Mark 1 capable of delivering up to 3 tonnes of materiel to the Moon, and Blue Moon Mark 2 crews of up to four (although 2 will be the initial standard complement) or between 20 tonnes (lander to be re-used) or 30 tonnes (one-way mission) of cargo.

Currently, the Blue Moon Pathfinder flight is scheduled for Q1 2026 – and could potentially take place before the end of January.

Artemis 2: Four People Around the Moon and Back

Artemis 2, meanwhile is targeting a February 5th, 2026 launch. It will see the first crew-carrying Orion Multi-Purpose Crew Vehicle (MPCV) head to cislunar space with three Americans and a Canadian aboard in a 10-11 day mission intended to thoroughly test the vehicle’s crew systems, life support, etc. Despite all the negative (and in part unfair) criticism of the Orion system and its SLS launch vehicle, 21 of the 22 pre-launch milestones have now been met. This leaves only the roll-out of the completed SLS / Orion stack to the launch pad and the full booster propellant tanking testing order for the green light to be given to go ahead with a launch attempt.

An infographic shown by Brad McCain, VP and Programme Manager, Armentum Space Operations Division – a company providing critical support to NASA for SLS ground operations – during a December 15th Webinair on Artemis 2. Note both of the December 2025 items were achieved shortly after the webinair. Credit: Armentum / CDSE

No date has been publicly released for the roll-out, but given the issues experienced with Artemis 1, when helium purge leaks caused problems during the propellant load testing, it is likely that even with the high degree of confidence in the updates made to the propellant loading systems since Artemis 1, NASA will want as much time as possible to carry out the test ahead of the planned launch date.

Whilst Orion did fly to the Moon in 2022, the vehicle being used for Artemis 2 is very different to the one used in Artemis 1. This will be the first time Orion will fly all of the systems required to support a crew of 4 on missions of between 10 and 21 days in space (as is the initial – and possibly only, giving the calls to cancel Orion, despite its inherent flexibility as a crewed vehicle – requirements for the system). As such, Artemis 2 is intended to be a comprehensive test of all of the Orion systems, and particularly the ECLSS – Environmental Control and Life Support System; the vehicle’s Universal Waste Management System (UWMS – or “toilet”, to put it in simpler terms); the food preparation system and the overall crew living space for working, eating, resting and sleeping.

The Artemis 2 crew (l to r: Canadian Space Agency astronaut Jeremy Hansen and NASA astronauts Christina Koch, Victor Glover, and Reid Wiseman) outside the Astronaut Crew Quarters inside the Neil Armstrong Operations and Checkout Building, Kennedy Space Centre, during an integrated ground systems test for the mission, September 20th, 2023. Credit: Kim Shiflett

These tests are part of the reason the mission is set to have a 10-11 day duration compared to the average of 3 days the Apollo missions took to reach, and then return from, the vicinity of the Moon: NASA want to carry out as comprehensive a series of tests as possible on Orion “real” conditions prior to committing to launching the 30-day Artemis 3 mission.

The mission will also be a critical test for Orion’s heat shield. During Artemis 1, the Orion heat shield suffered considerable damage during re-entry into the Earth’s atmosphere, in what was called “char loss” – deep pitting in the heat shield material. Analysis of the damage reviewed the gouges to be the result of “spalling”. In short, in order to shed some of its enormous velocity prior to making a full re-entry into the atmosphere, Orion had been designed to make several “skips” into and out of the atmosphere, allowing it to lose speed without over-stressing the heat shield all at once.

Unfortunately, the method used to manufacture the original heat shields resulted in trace gases being left within the layers of ablative material. When repeatedly exposed to rapid heating as the Artemis 1 Orion vehicle skipped in and out of the upper atmosphere, these gases went through a rapid cycle of expansion, literally blowing out pieces of the heat shield, which were then further exacerbated as the vehicle make its actual re-entry, resulting in the severe char loss.

Two of the official NASA images showing the severe pitting and damage caused to the Orion MPCV heat shield following re-entry into Earth’s atmosphere at 36,000 km/h at the end of the uncrewed Artemis 1 mission, December 11th, 2022. They show the “char loss” pitting caused by “spalling” within the layers of heat shield material. Credit: NASA / NASA OIG

As a result of the Artemis 1 heat shield analysis, those now destined to be used on Artemis 3 onwards will be put through a different layering process to reduce the risk of residual gases becoming trapped in the material. However, because the heat shield for Artemis 2 was already cast, the decision was made to fly it with the mission, but to re-write the Orion’s atmospheric re-entry procedures and software to limit the number of atmospheric skips and the initial thermal stress placed on the heat shield, thus hopefully preventing the spalling.

The Orion vehicle to fly on Artemis 2 is the second fully-completed Orion system – that is, capsule plus European Service Module – and the first vehicle to ne formally named: Integrity. It is functionally identical to the vehicles that will fly on Artemis 3 onwards, with the exception that it is not equipped with the forward docking module the latter vehicles will require to mate with their HLS vehicles and / or the Gateway station.

The SLS booster to be used in the mission is the second in a series of five such boosters being built. Three of these – the vehicle used with Artemis 1 and those for Artemis 2 and 3 are of the initial Block 1 variant, using the Interim Cryogenic Propulsion Stage (ICPS) as their upper stages. This is an evolution of the well-proven – but payload limited – Delta Cryogenic Second Stage (DCSS) developed in the 1990s, and powered by a single RL-10B motor.

Artemis 4 and 5 are intended to be Block 1B versions of SLS, using the purpose-built and more powerful Exploration Upper Stag (EUS), powered by 4 of the uprated RL-10C version of the same engine, enabling them to lift heavier payloads to orbit and the Moon. This means that both Artemis 4 and Artemis 5 will each lift both an Orion MPCV with a crew of 4 and a 10-tonne module intended for the Gateway station intended to be the lunar-orbiting waystation for crews heading to the Moon from Artemis 4 onwards.

A comparison between the SLS ICPS and future EUS. Credit: NASA

However, to return to Artemis 2: as noted, it will be the second SLS rocket to be launched, and like Artemis 1, will fly using the venerable and (up until SLS at least) reusable RS-25 motor developed by Rocketdyne for the US space shuttle vehicles. Sixteen of these engines survived the end of the shuttle programme, and Artemis 2 will see the use of both the most reliable of them ever built. and the only one to be built for the shuttle programme but never used.

Engine 2047 has flown more missions than any other RS-25 – 15 shuttle missions in which it gained a reputation for being the most reliable space shuttle main engine (SSME), consistently out-performing all other motors to come off the original production line. It proved so reliable that not only did it help lift 76 astronauts from the US and around the world into orbit, it was often specifically requested for complex mission such as those involved construction of the International Space Station and servicing the Hubble Space Telescope. By contrast, engine 2062 will be making its first (and last) flight on Artemis 2, being the last of the original RS-25’s off the production line.

The four RS-25 engines to be used on Artemis 2, with 2047 highlighted. Credit: Helen Lewin, RS-25 Launch Support Lead, Aerojet Rocketdyne, via the December 15th, 2025 CDSE webinair

Such is the engineering behind these engines and their control systems that is worth spending a few paragraphs on exactly how they work at launch. While it may seem that all the motors on a multi-engine rocket fire at the same time, this is often not the case because of issues such as the sudden dynamic stress placed on the vehicle’s body and matter of balance, as well as the need to ensure the engines are running correctly.

For the SLS system, for example, engine preparation for launch starts when the propellant tanks are being filled, when some liquid hydrogen is allowed to flow through the engines and vent into the atmosphere in a process called chill down. This cools the critical parts of the engines – notably the high pressure turbopumps – to temperatures where they can handle the full flow of liquid hydrogen or liquid oxygen without suffering potentially damaging thermal shock.

Actual ignition starts at 6.5 seconds prior to lift-off, when the engines fire in sequence – 1, 4, 2, and 3 – a few milliseconds apart (for Artemis 2 engine 2047 is designated flight engine 1 and 2062 flight engine 2, and so these will fire first and second).  Brief though the gap is, it is enough to ensure balance is maintained for the entire vehicle and the four engines can run up to power without creating any damaging harmonics between them.

A diagram of the RS-25 rocket engine used in both the space shuttle system and SLS. Credit: Helen Lewin, RS-25 Launch Support Lead, Aerojet Rocketdyne, via the December 15th, 2025 CDSE webinair

The low and high pressure turbopumps on all four engines then spool up to their operating rates – between 25,000 and 35,000 rpm in the case of the latter – to deliver propellants and oxidiser to the combustion chamber at a pressure of 3,000psi – that’s the equivalent of being some 4 km under the surface of the ocean. During the initial sequence, only sufficient liquid oxygen is delivered to the engines to ignite the flow of liquid hydrogen, causing the exhaust from the engines to burn red. This high pressure exhaust is then directed as thrust through the engine nozzles, meeting the air just beyond the ends of the engine bells.

The counter-pressure of the ambient air pressure is enough to start pushing some of the exhaust gases back up into the engine nozzles, causing what is called a separation layer, visible as a ring of pressure in the exhaust plume. This back pressure, coupled with the thrust of the engines, is enough to start flexing the engine exhaust nozzles, which in turn can cause the exhaust plume on each engine to be deflected by up to 30 centimetres.

Images of a Space Shuttle Main Engine (SSME) ignition sequence showing the formation of the separation rings (arrowed left) and the cleaner-burning half-diamonds (right) as the engines come to full thrust. Credit: NASA

To counter this, the flight control computers initiate a cycle of adjustments throughout each engine, which take place every 20 milliseconds. These adjust the propellant flow rate, turbopump speeds, combustion chamber pressure and the movement of the engines via their gimbal systems in order to ensure all of the engines are firing smoothly and all in a unified direction and pressure, symbolised by a “half diamond” of blue-tinged exhaust (the colour indicating the flow of liquid oxygen) as the separation layer is broken, the thrust of the engines fully overcoming ambient air pressure resistance. All this occurs in less than four seconds, the flight computers able to shut down the engines if anything untoward is monitored. Then, as the countdown reaches zero, the solid rocket boosters (SRBs) ignite and the vehicle launches.

Once underway, Artemis 2 will carry its crew of 4 into Earth orbit for a 24-hour vehicle check-out phase, during which the orbit’s  apogee and perigee are raised. Check-out involves the crew completing a series of tests on the vehicle and its systems, including piloting it, both before and after the ICPS is jettisoned. Completion of this initial check-out phase will conclude with the firing on the ESM’s motor to place Orion on a course for the Moon.

Orion includes the ability for the crew to stow their flight seats flat once in orbit in order to give themselves more room in the capsule. This includes allowing them to rig four shuttle-style sleeping bags in the cabin, each of them positioned in a way that also maximises space for the crew, whilst also positioning them close to the vehicle’s “glass” command and control systems. Credit: NASA

The flight to the Moon will be undertaken using what is called a free return trajectory. That is, a course that will allow the vehicle to loop around the Moon, using its gravity to swing itself back onto a trajectory for Earth without using the main engine to any significant degree. This is to ensure that if the ESM were to suffer a significant issue with its propulsion system, the crew can still be returned to Earth; only the vehicle’s reaction control system (RCS) thrusters will be required for mid-course corrections.

This also means that the mission will only make a single pass around the Moon, not enter orbit. It will pass over the Moon’s far side at a distance of  some 10,300 kilometres and then head back to Earth. On approaching Earth, the Orion capsule will detach from the ESM, perform the revised re-entry flight to hopefully minimise any risk of spalling / char loss, prior to splashing down in the Pacific Ocean off the coast of California.

Orion MPCV 003 Integrity, the vehicle that will carry 4 astronauts on Artemis 2 at Kennedy Space Centre in 2025. The capsule is mated to its ESM, which is in turn mounted on the conical Spacecraft Adapter and awaiting the installation of the three Encapsulated Service Module Panels. Credit: NASA 

I’ll have more on the actual mission and the flight itself as it takes place. In the meantime, my thanks to the Coalition for Deep Space Exploration (CDSE) for hosting a special webinair on Artemis 2 in December 2025, from which portions of this article – particularly some of the graphics – were drawn.

A New Year’s Reality Escape in Second Life

Reality Escape, January 2026 – click any image for full size

With the start of a new year, I thought I’d take a trip to one of my favourite SL settings: Reality Escape, the Full private region held by Tripty (triptychlysl).

It’s a place I’ve appreciated over the years both for the way each iteration presents something new to appreciate whilst each carries forward motifs from Tripty’s original Books, Coffee and Chairs, Oh My! which I’d visited in 2023. I’ve been back some four times since then, and Reality Escape have never failed to feel like a safe and welcoming retreat.

Reality Escape, January 2026
For this iteration, the Landing Point sits in the south-western corner of the setting’s main island, where Tripty’s familiar greetings are etched into the boards of the Landing Point decking and can be seen on the sign facing the deck. The latter is a greeting I always find raises a smile – You Are About to Enter Someone Else’s Dream -, and which is joined by another: Blame it on My Gipsy Soul, a sentiment I can fully appreciate for the wanderlust it evokes.

From here, three routes of exploration present themselves to new arrivals. Two take the form of raised wooden walkways and the third a hop over a very narrow channel to a flat, grassy island, home to a bench “borrowed” from a waiting room. The first of the two walkways runs along the southern shore of the the island to the Reality Escape Coffee Shop, whilst the second winds northwards and turns a little inland to arrive at the Reality Escape reading nook.

Reality Escape, January 2026

The Coffee Shop is an open-air affair marked by Tripty’s familiar chair sculptures, the place made cosy by the ivy-hung trelliswork extending out from the cliff and ancient wall adjoining it at a right angle.

Another walkway here offers a route to the shingles close to the island’s edge and offering a further route onwards, watched over by the island’s Siamese ruler, sitting in his rather novel throne. Beyond the shingle, under an archway of chairs, the walkway continues up the island’s east coast. As it does so, it passes a summer house of unusual design offering a place of retreat.

Reality Escape, January 2026

For those who prefer to stay on the shingle path, this points the way – with the aid of stepping stones – to the crooked finger of another island as it points south and east, wooden decking running over the grass and around a firepit, offering another place for friends to gather.

The walk to the island’s bookshop also offers a way to a raised deck built out over the water, and guarded to one side by a further trellis line of Ivy, whilst below it sits something of a damp orchard. Up the hill, the reading nook is really more of an old tram repurposed as a place to enjoy books, perhaps in the Lewis Carroll-esque garden sitting behind the tram.

Reality Escape, January 2026

Beyond this, the walkway loops around westward to link-up with the route running on from the summer house. As it does so, steps lead down to a grass trail, a little muddy and wet in places, running out to north-pointing, low-lying headland. beyond an arch formed by an aged tree trunk, the path is bordered by candle-lit snowdrops as they form a candle-lit fairy spiral. Beyond these, another raised deck awaits, two pontoon rafts tethered to it. The latter perhaps invite people to take a dip in the water as they are watched over by a rather large goldfish enjoying the shade of a bunta tree which adds its own little sci-fi twist to the setting.

Tripty’s Reality Escape designs always presents setting rich in detail, and this version is no exception. There is much to be found and appreciated throughout – more than I’ve covered here (such as a little island hithertofore unmentioned in this piece and the various animals and wildfowl waiting to be found).

Reality Escape, January 2026

When exploring, I would recommend sticking with the region’s shared environment – although, as again is the case with Tripty’s work, the region does work very well with many other environment settings. Also, do make sure you have local sounds enabled for the fullest experience.

SLurl Details

Peace, love and music at Hippiestock 2026 in Second Life

Hippestock 2026

New Year 2026 will get off to a musical start in Second Life with the opening of the month-long Hippiestock festival on January 1st. Originally a day-long music event founded by Hippie Bowman as a way to for him connect directly with friends he’d made through the Second Life forums, the event has grown over the years to allow music fans from across Second Life to come together fun and music and to embrace the “hippie philosophy”, once described by Hippie himself as:

[A belief] in peace as the way to resolve differences among peoples, ideologies and religions. The way to peace is through love and tolerance. Loving means accepting others as they are, giving them freedom to express themselves and not judging them based on appearances. This is the core of the hippie philosophy.

– Hippie Bowman, January 2011

For 2026, Hippiestock will be taking place throughout January within an immersive Flower Power themed region created by CK Ballyhoo, with music and live events coordinated by Owl Dragonash. Key activities throughout the festival include:

General Events

  • Tuesday DJs:
    • January 6th: – Dinky Day with DJ Zed at 10:00 and Uli Jansma at 12:00 noon.
    • January 13th: 10:00 – DJ Samum (10:00); 12 noon – LiTo DJ Team.
    • January 20th: 11:00 – Ari’s Piano Set; 12:00 noon – DJ Holocluck.
    • January 27th: 10:00 – DJ Marnie Morningstar; 12:00 noon – DJ Jeff Randall.
  • Wednesday Live performances:
    • January 7th: 12:00 noon – Lluis Indigo;  13:00 – Ed Lowell.
    • January 14th: 12:00 noon – Ronnie Mayes; 13:00 – Laidback Celt.
    • January 21st: 11:00 – Mark Taylor; 12:00 noon –   Mr Wobbit.
    • January 28th: 11:00 – Joe Paravane; 12:00 noon – Lluis Indigo
  • Sunday Meditation sessions with April Acorn:
    • January 4th: 11:30.
    • January 18th: 11:30.
  • Contests:
    • Flower Power Art Contest – open for entry from now through to January 12th, 2026. Winners announced at the event, January 17th.
    • Hippiestock Photo contest – open for entry January 1st-22nd, 2022, Winners announced on January 28th.
    • Full details on both contests available at the Art Display at Hippiestock.
  • Drum circles and social gatherings throughout the festival.
Hippiestock 2025

Special Events

  • Thursday, January 15th – Feed A Smile Day in support of Live and Learn Kenya. Featuring:
    • 11:00 – Steve Who.
    • 12:00 noon – Mavenn.
    • 13:00 – Bsukmet.
  • Saturday, January 17th – Hippestock LIVE! Featuring:
    • 09:00 – Hippie Bowman.
    • 10:00 – Alsund.
    • 11:00 – Lluis Indigo.
    • 12:00 noon – Joe Paravane.
    • 13:00 – Shannon Oherlihy.
    • 14:00 – Jed Luckless.
  • Thursday, January 29th, 12:00-14:00 – Flower Power with DJ Anna Butterfly.

So for some great music and the chance to peace out, why not slip into something suitably flowing and emblematic of the ’60s, put some flowers in your hair and join the Hippiestock fun throughout January?

SLurl Details

Bay City New Year 2025/26 prim drop in Second Life

Bay City Prim Drop, 2025/2026

Wednesday, December 31st 2025 will once again see Bay City celebrate the turning of the year with their annual Prim Drop festivities.

An outdoor, formal dress event, the Prim Drop is open to all Second Life residents, with festivities opening at 23:00 SLT at the Bay City Fairgrounds in North Channel. Marianne McCann will be providing the music and fireworks in a 2-hour extended DJ set, and food and drink will be provided.

This will also be the final opportunity for 2025 to donate to Child’s Play Charity,  a US 501c3 non-profit organisation which helps seriously ill children around the globe during their hospital stays with the purchase of games and gaming equipment. So even if you can’t make it to the event itself, do please consider taking a couple of minutes out of your SL day and stopping by the Bay City Fairgrounds and making a donation via one of the collection bins there.

About Bay City and the Bay City Alliance

Bay City is a mainland community, developed by Linden Lab® and home to the Bay City Alliance. The Bay City Alliance was founded in 2008 to promote the Bay City regions of Second Life and provide a venue for Bay City Residents and other interested parties to socialize and network. It is now the largest group for Residents of Bay City.

SLurl Details

Space Sunday: a look at near-future space stations

An artist’s impression of India’s Bharatiya Antriksh Station (BAS), on-orbit assembly of which is targeted to commence in 2028 

In my previous Space Sunday piece, I covered the appointment of Jared Isaacman as the new NASA Administrator and the fact that on the day of his appointment, he was effectively given a new set of high priority tasks by the White House. Among these was an order to oversee the decommissioning of the International Space Station (ISS) in 2030, and to move US low-Earth orbit space operations over to the private sector.

The Decommissioning of the ISS is not new – in fact, it was originally intended to only be in operation through until 2015, but such is the success of the mission that it has been periodically extended by mutual agreement of the supporting partners – notably the US, the European Space Agency and Canada, all of who form the nucleus of the International section of the station (officially referred to as the US Orbital Segment, or USOS), together with Russia, operating the Russian Orbital Segment (ROS).

Despite this success, Russia actually started planning to depart the ISS in 2009, when it indicated it would separate the ROS from the ISS in 2016(ish) and use the modules to establish the Orbital Piloted Assembly and Experiment Complex (OPSEK), a new station intended to become the “gateway” to Russian crewed missions to the Moon and beyond. But with the agreements reached to extend ISS operations beyond 2015 and then beyond 2020, Russia opt to push the OPSEK idea to one side, seeing more advantage in remaining part of the ISS programme.

This changed in 2021, when negotiations commenced to extend ISS operations beyond 2024. Roscosmos was initially unhappy about any extension beyond 2024, citing concerns that several of their ISS modules would be approaching their end of life. Whilst a semi-agreement was reached by the majority of parties to see the ISS remain operational until at least 2028, Roscosmos would only commit to the agreed 2024 end-date, stating that Russia would exit the programme some time thereafter. This was an ambiguous statement at best, given that departing the ISS agreement “after 2024” could be taken to mean Russia would remain engaged until 2028 or even 2030 – or could simply announce its intention to pull out at any time in between, simply giving the minimum 12-month notice required of the partnership agreement.

Instead of formally agreeing to stay with the ISS through until at least 2028, Roscosmos indicated that from 2022 onwards, it would start to pivot towards its own new space station, Rossiyskaya orbital’naya stantsiya (or ROS – which, in order to avoid confusion with the existing ROS at the International Space Station, is generally referred to as ROSS: the Russian Orbital Service Station). Under the initial plan put forward, ROSS was to be established in a polar, Sun-synchronous orbit (allowing it to observe the entire surface of the Earth), and would comprise an initial two modules Russia had been developing for the ISS – NEM-1 and NEM-2.

A model of Russia’s proposed Russian Orbital Service Station (ROSS), also called Rossiyskaya orbital’naya stantsiya (ROS), as displayed at the 2022 Armiya International Military-Technical Forum. Note the next generation crew vehicle docked with the station (foreground): the design is remarkably similar to that for India’s Gaganyaan crewed vehicle and China’s Mengzhou next generation crew vehicle.

Under this plane, rather than going to the ISS in 2024 and 2025 respectively, the NEM modules would be repurposed, NEM-1 becoming the Universal Node Module (UNM) at the heart of the new station to be launched in 2027. NEM-2 would then become the Base Module (BM) for expanding the station, with a planned launch in 2028. Further brand-new modules would then be added periodically through until 2035.

However, those plans have now changed again. Whilst the repurposing of the former NEM modules continues and their launch dates remain broadly unchanged, on December 17th, 2025, it was announced that Roscosmos plan to detach their ROS modules from the ISS in 2030 and use them to help form the new ROSS facility, which would now occupy a 51.6º orbit (i.e. one on a par with the ISS, as attempting to move the Russian modules into a high inclination orbit isn’t really feasible).

The Russian Orbital Segment (ROS) of the ISS. Credit: Russianspaceweb.com

The announcement – made by Oleg Orlov, Director of the Institute of Biomedical Problems at the Russian Academy of Sciences (RAS) rather than by Roscosmos – is something of a surprise. As noted, several of the Russian ISS modules are either approaching or have surpassed their planned lifespan (what Roscosmos refers to as their “warranty period”).

Of the major modules, Zarya (the first module of the ISS to be launched and the module directly connecting to the USOS segment of the ISS) commenced construction in 1994 with completion in 1998, and thus will hit 30 years in 2028; Zvezda, the functional core of the Russian segment of the ISS is even older, having initially been laid down in 1985 as a part of the never-flown “Mir-2” space station. It has also, since 2019, been subject to on-going air leaks likely the result of failing welds within a part of its structure.

Nauka is similar to Zvezda in that its core frame was laid down in the mid-1980s, only for work to the halted for a time and the resumed in the 1990s when it was re-purposed to be the back-up for Zarya, prior to work halting again. Thus, whilst it is the most recent of the large modules to be added to the Russian segment of ISS (2021), it is in part one of the oldest at 30 years. Only the three smaller modules, Rassvet, Prichal and Poisk will have reasonable lifespans after they separate from the ISS.

A further concern in the “recycling” of the current ROS modules as a part of any new station is that of contamination. Orlov himself raised concerns over the potential health risks for cosmonauts using the ROS modules in 2022, after it was found that bacteria and fungi had successfully made themselves at home within some of the modules and have proven particularly hard to eradicate.

Speculation is that the move back to continuing to use the ROS elements of the ISS within the new Russian space station despite the risks involved has been driven by economic factors – the cost of the invasion of Ukraine, the impact of western sanctions, and diminishing resources. First Deputy Prime Minister Denis Manturov, when indirectly commenting on Russian space ambitions, indicated the decision to move the new station to 51.6º orbit and use the ISS elements was the result of both economic factors and the fact that operating a station at such an inclination would help facilitate co-operative research between ROSS and the upcoming Indian space station which will occupy a similar orbital inclination, making both stations equally accessible to launches from either nation.

Exactly where all this might lead is still open for debate; critique over the proposed re-use of the ROS elements of the ISS is currently garnering as much concern from inside Russia as it is from the wider international community. As such, exactly if and how ROSS will develop remains to be seen.

And yes, India is also getting in on the space station act, despite never having domestically flown anyone to orbit – yet.

A full-scale mock-up of the core module for India’s Bharatiya Antariksh Station, arriving in New Delhi to form a part of the exhibition displays for India’s National Space Day, August 2025. Credit: ISRO via ANI

The Bharatiya Antriksh Station (BAS) forms a core part of an ambitious and aggressive drive by India to become a major space power, with the country developing plans for an expanding presence in space extending out to 2047. Part of this involves engaging in partnerships and agreements with other major space players – notably the European Space Agency (ESA), NASA and Roscosmos.

However, India is also already well advanced in its development of a human-rated launch capability, with its Gaganyaan (“celestial craft”) crew vehicle and service module due to make its first uncrewed orbital flight in January 2026. Two further uncrewed test flights planned for 2026 prior to a first crewed orbital flight in 2027.

Capable of flying a crew of up to 3, Gaganyaan carries certain similarities to both the upcoming Russian next generation crew capsule and that of China’s in-development new crew vehicle. It is highly automated and capable of independent on-orbit operations of up to seven days duration, and it will be used to ferry crews to / from the upcoming BAS.

India’s Gaganyaan crewed vehicle (sans solar arrays) and its HLV3M launch vehicle. The latter is a crew-rated evolution of the country’s medium-lift Launch Vehicle Mark-3 (LVM3), with a 10-tonne to LEO payload capability. Credit: ISRO

On-orbit assembly of BAS is due to commence in 2028 with the launch of the first module, currently referred to as “Phase-1”. Details of the completed station’s design and appearance are scant, but modules will be launched using India’s LVM3 medium-lift launch vehicle, suggesting they will all not exceed 10 tonnes in mass and thus marking them as slightly smaller than the core modules of the international segment of the ISS. What is known indicates that BAS will likely comprise 5 main modules, including a multiple docking facility, and when complete, mass around 50-55 tonnes orbiting in a 51.4º inclination orbit at an altitude of 400-450km. The size of the station at five core modules suggests it will have an overall pressurised volume of about 260m³, of which roughly 105m³ will be habitable space (the rest being taken up by life support and other essential systems). This would make the completed BAS facility slightly smaller than the current size of China’s Tiangong station.

Not that a lack of size accounts for anything – simply constructing, launching, assembling and operating its own independent orbital facility, capable of supporting 3 or 4 people in relative comfort (and 6 at a squeeze for short periods) would be a truly significant achievement for India. One which would further boost the country to the forefront of dedicated international space research.

Which brings us to China and Tiangong.

A rendering of China’s Tiangong space station showing a Shenzhou crew vehicle docked at the Tianhe module (foreground), an next generation Mengzhou crew vehicle attached to the nadir port on the main docking module and on of the massive Tianzhou automated resupply vessels mated to dock adapter’s rear port (relative to the image). Credit: CMSA

With their space station now well established, China is again indicating a potential further expansion to Tiangong. Originally announced in 2023, the expansion now appears to be going ahead, the plan being to add up to three further modules – a new core habitat module (essentially an updated version of the current Tianhe core module with a new multi-port docking module) plus two improved versions of the physically near-identical Wentian and Mengtian science modules.

The new modules will provide increased living and working space allowing for expanded crews on the station, with the science modules including 3D printing capabilities, improved robotic arms and external experiment bays, with crew supported in their work by robot systems.  A new suite of equipment intended for space debris observation, detection and potential collision warning will also be included within the updated core module, underscoring the increasing risk to spacecraft operating in low Earth orbit being exposed to space debris collisions – a lesson the Chinese recently learned with Shenzhou 20.

To further enhance Tiangong’s importance, China has been developing international partnerships to carry out joint research into a range of areas (including human medicine and health) with multiple nations. These cooperative ventures include both Russia and India, and until political and financial tensions ended it, the European Space Agency was forming a collaboration with China that would have seen European astronauts training with Chinese tiakonauts and completing crew rotations on Tiangong.

A computer-generated rendering of the expanded Tiangong space station, showing the existing modules – Tinahe, Mengtian and Wentian with a Tianzhou resupply vehicle docked at the Tianhe module, and the proposed new modules (top of image) as they will likely be attached to the station. Additional solar arrays for power may also be added by means of booms attached to the outer ends of Mengtian and Wentian. Credit: CMSA, annotations by I.Pey.

No time frame has been given as year for the launch of the plan new modules for the Chinese station; the focus right now is in lifting the Xuntian space telescope into orbit.

This state-of-the-art observatory will co-orbit with Tiangong and be capable of periodic automated docking with the station to allow for maintenance and update. Xuntian will have a 2-metre diameter primary mirror (compared to the 2.4 metre diameter primary mirrors on the Hubble Space Telescope and the upcoming Nancy Grace Roman telescope), coupled to a 2.5 gixapixel camera to give it a field of view 300-350 times greater than Hubble and with a higher resolution.

A model of the Xuntian space telescope showing it in launch configuration with its solar panels folded against the main hull and the primary mirror door (at the far end of the model) closed. Visible at the foreground end of the model is the docking adapter that will allow the observatory to attach itself to the Tiangong space station for servicing and repair operations by Tiangong’s crew. Credit: CMSA

Also known as the CSST – Chinese Space Station Telescope – Xuntian is so advanced it has faced several delays in its launch whilst issues were resolved. Originally, it had been planned to lift the observatory to orbit at the end of 2023, this date was first pushed back into 2024 and then to mid-2025. Currently, China is targeting an end-of-2026 launch for Xuntian, after which the focus will switch more to Tiangong’s expansion.

In addition, and further underscoring China’s longer-term intentions in orbit and beyond, 2026 should see the first uncrewed launch of Mengzhou, the country’s next generation crew-carrying vehicle. Capable of carrying up to 6 (or a crew of 3 + a half tonne of supplies), Mengzhou is to form the backbone of Chinese human space activities through the 2020s and 2030s, serving as both a crew transportation vehicle  between Earth and Tiangong and as the principle means of ferrying crews to / from lunar orbit as China seeks to establish a presence there.

Also on the horizon for Tiangong is a new automated resupply vehicle. Called Qingzhou, it is intended to operate alongside China’s existing Tianzhou resupply craft, but provide a lower-cost alternative for delivering small loads (around 2 tonnes) to Tiangong quickly and easily. A focus of this will be in the delivery of food and water supplies for crews on the station, including fresh produce which can be stored in a 300-litre capacity “cold chain” food store. As with Mengzhou, the compact resupply vehicle, roughly 5 metres long and 3 metres in diameter, is expected to make an initial test flight in 2026. Further, once operational, Qingzhou will be offered commercially as a cargo delivery service to other space station facilities including both BAS and ROSS.

A scale model of China’s next generation Mengtian crew vehicle (l) and a full-scale mock-up of the new Qingzhou resupply vehicle. Both are expected to undergo orbital flight tests in 2026. Credit: various

As noted in my previous Space Sunday article, the United States has no plans to operate any fully government-funded space station in Earth orbit once the ISS is decommissioned. Instead, it is looking to the private sector to take up the challenge. While there are several in-development private sector space station proposal in development, all of which are seeking partial US government funding, whether any  / all of them will offer the kind of space-based research facilities as offered by the ISS is questionable. As is the question as to which of them will actually fly.

For example, two of the leading contenders in the race to develop a private sector space station are a consortium led by Blue Origin (Orbital Reef), and a solo venture by Axiom Space (Axiom Station). However, despite chasing further NASA funding under the LEO Destinations Programme, both of these stations would appear to be primarily focused on the (potentially lucrative) space tourism business, boasting facilities such as private suites with views of Earth, high-definition audio systems, “mood enhancing LED lighting throughout”, cosy, soft fabric coverings for interior walls, and other creature-comforts.

Another seeker of NASA funding is Vast, a company trying to establish two facilities in orbit. The first is a single module station called Haven 1, intended to be launched some time in mid-2026. More of a proof-of-concept than practical orbital facility, the company plans to follow Haven 1 with Haven 2, starting in 2028.

This is a far more ambitious undertaking, intended to expand from a single module in 2028 to a total of nine by 2032, new modules being added at roughly 6 month intervals. However, whilst billed as a successor to the ISS and capable of EVAs and other activities, and of providing “10 external payload facilities, allowing scientific research, development, and manufacturing to take place outside the station”, the exact science capabilities for Haven 2 have not been publicly released.

Vast’s proposed Haven 2 space station in it 2032 completed configuration. Credit: Vast

A small-scale technology demonstrator, Haven Demo, intended to test the propulsion, flight computers and navigation software to be used on Haven 1 and Haven 2 was successfully launched by SpaceX (who will provide all launch capabilities for the Vast projects, including crew transportation using Crew Dragon, together with communications via the Starlink network), so it will be interesting to see what data this returns and whether or not Vast can meet their mid-2026 launch target for Haven 1.

One further project I’ll mention here is Starlab, a joint venture between Voyager Technologies in the US and Europe’s Airbus Defence and Space. This potentially has the firmest footing in space research and science, as is intended to comprise two 8 metre by 8 metre modules (that is, twice the diameter of the modules in the international segment of the ISS) in which up to 400 experiments per year can be performed, putting it on a par with the ISS. However, the entire project is currently dependent on the SpaceX Starship vehicle as its launcher. Given the overall status of that project (which is well behind its promised schedule, and apparently solely focused on being a Starlink delivery system if / when it does start proving it can reach orbit carrying a decent payload and be successfully reused) the proposed late-2028 launch target for Starlab could be best defined as “optimistic”.

Thus, on the one side of things, national interests in operating relative large-scale space station facilities  – and offering at least some of them (India, China) for international research opportunities – appears to be one the rise, whilst in the US, the emphasis is on turning LEO capabilities for humans over to the private sector wherein revenue, margins and profit are far more motivating than research. As such, it will be interesting as to which plays out better in terms of on-going space-based R&D – and which facilities actually come to pass.

Natthimmel: The Keepers of Twin Lights, St. Castoris in Second Life

Natthimmel: The Keepers of Twin Lights, St. Castoris, December 2025 – click any image for full size

Over the last couple of months and for reasons I can’t really explain, I’ve been getting interested in the US and Canadian Great Lakes and parts of their history. Much of this has centred on the role of the lakes in enabling commerce, and the sad tales of vessels such as the Edmund Fitzgerald (perhaps brought to international recognition by songster Gordon Lightfoot, and the loss of which occurred 50 years ago this past November), the Carl D. Bradley and the Daniel J Morrell, to name but three of the largest vessels to go down on the lakes.

I mention this as a roundabout way of introducing the December 2025 Natthimmel build by Konrad (Kaiju Kohime) and Saskia, and which draws inspiration from the shores of Lake Michigan (although not, admittedly, any of the vessel losses which have occurred on Michigan and her sister lakes down the centuries; that was something my little mind just jumped to in visiting the setting, for the reasons noted above).

Natthimmel: The Keepers of Twin Lights, St. Castoris

Entitled The Keepers of Twin Lights, St. Castoris, the region design appears to draw its inspiration from the paired lighthouses of St. Joseph, Michigan, where two very similar lights (now decommissioned) once guarded the entrance to St. Joseph River, some 190 km northeast of Chicago.

The river had long been a trade and transport route linking the Great Lakes with the Mississippi River prior to the arrival of European settlers as they muscled their way westward. However, they established a significant outpost at the mouth of the river at the end of the 1700s, starting a continuous presence there which led to the establishment of St. Joseph village (now city).

Natthimmel: The Keepers of Twin Lights, St. Castoris

The two lighthouses that inspired St Castoris were built in 1906 and 1907. They are very distinctive in terms of both looks and location. Both stand on a long pier extending out into the lake (one of two piers extending out from the mouth of the river), with a raised catwalk running the length of the pier to connect both lighthouses with the land.

The outer lighthouse is of a tapering conical build topped by a distinctive 9-sided lantern room. The inner lighthouse is a little more distinctive: a square lower level with a pyramidal roof rising to an octagonal tower with its own external access via steel dog-leg stair from the pier (and via the catwalk).

Natthimmel: The Keepers of Twin Lights, St. Castoris

Many of these elements are captured in Konrad’s custom models of the lighthouses within St. Castoris; the distinctive similarities (if you’ll forgive the term!) leading me to conclude that St Joseph serves as the inspiration here. Indeed even the frozen water spray hugging the outer tower is mindful of a 2010 snapshot showing much the same.

But again, it’s important to note that even if inspired by the lighthouses at St. Joseph, Saskia and Konrad’s St. Castoris is very much its own place; there is no beach or harbour entrance at what might be the landward end of the setting. Nor do the lighthouses stand on a pier of relatively modern construction, as is the case with St. Joseph.

Natthimmel: The Keepers of Twin Lights, St. Castoris

Instead, St. Castoris’ lighthouses appear to be built upon a long, narrow breakwater formed by earth, boulders and rocks dumped into the water to extend a finger outward, one with enough soil present to allow lines of frosted aspen to march out on either side of the catwalk at least as far as the inner lighthouse.  And while the lighthouses of St. Joseph may have been decommissioned in 2005, the lights of St. Castoris remain active, sweeping out towards the horizon, twin beacons indicating the safety of land, while much smaller buoys cast the red glow of warning against vessels coming too close in error to the more dangerous shores and ice floes lurking there.

It is to one vessel in particular that the lighthouses call, and the story of that vessel and its master can be found in the setting’s introductory notecard available at the Landing Point, as always. This offers further insight to St. Castoris, and carries with it the faint suggestion that within its narrative, the story refers to an earlier age whilst also offering a subtle hint as to the wayward nature of the weather over the Great Lakes during the winter months.

Natthimmel: The Keepers of Twin Lights, St. Castoris

As always with Natthimmel, Konrad and Saskia have created an engaging setting which sinks its roots into history and the physical world whilst offering its own uniqueness. Look for the places to sit that await discovery and enjoy!

SLurl Details