Space Sunday: galaxies, launches and health in space

Gz-13, as seen by the James Web Space Telescope, one of the earliest known galaxies in the universe and seen as it would have appeared just a few million years after the Bi Bang. Credit: NASA / ESA / CSA / STScI

The above image may not look to be much, but it in fact a glimpse at one of the most distance galaxies from our own, a place called Gz-13. It is so far away, the light captured by the image departed it about 300 million years after the universe itself was born.

Gz-13 is a part of a cluster of galaxies seen within one of the first set of images released by NASA from the James Webb Space Telescope (JWST), and which I covered in my previous Space Sunday update. So far away are these objects, that they can only be seen via the effect of gravitational lensing – using the gravity of an object much, much closer to our own solar system to “bend” the light from them and focus it so that JWST can capture images.

Gz-13 lies tucked away in the SMAC-0723 grouping of very distant objects. Originally imaged by the Hubble Space Telescope (HST), the grouping has been given sharp, new high-definition exposure by JWST. Some much definition, in fact, that GZ-13 hadn’t been seen by Hubble.

While it may seem like a blob of red-shifted light, massively distant objects like Gz-13 (and Gz-11, another far-distant galaxy that was seen when Hubble viewed SMACS-0723) are important targets for study, as they represent a period of time literally just a blink (in cosmic terms) after the universe went off with its Big Bang; thus thus represent an opportunity for us to understand what was going on very close to the origin of literally everything there has ever been.

SMACS 0723 as it appeared 4.6 billion years ago. Tucked away inside this cluster sits Gz-13. Credit: NASA/Goddard Space Centre / STScI

What is particularly interesting about the likes of Gz-11 and Gz-13 is that despite being formed just 150-200 million years after the first stars are believed to have started forming, they still have masses that suggest they are home to several billions stars with a mass equivalent to our own Sun. Thanks to them being so bright in the infra-red, they offer an unparalleled opportunity for astronomers to carry out extensive spectrographic analysis  to help us to discover more about them and the nature of the stars they contain – including, potentially, whether any of their stars might be surrounded by disks of dust and gas that might have gone on to form planets.

Given the nature of the expanding universe, Gz-11 and Gz-13 are liable to be just the tip of a massive iceberg of galaxies far, far, away that are waiting for JWST to find. This is turn will massively increase our total understanding of the nature of the universe, and the formation and growth of the galaxies within it. In fact, it is very possible that JWST will look so far out that we are looking almost back to the very edge of the Big Bang itself.

China Launches First Space Station Science Module

China has launched the first of two science modules to its nascent Tiangong Station (TSS).

The Wentian module was lifted into the sky atop a Long March 5B heavy-lift rocket at 06:25 UTC on Sunday, July 24th, the launch taking place from the Wenchang spaceport on the southern island of Hainan.

Measuring 17.9 metres in length and with a diameter of 4.2 metres, the module has an operational mass of around 23 tonnes, putting it on a par with US and international modules on the ISS. At the time of writing, the module was due to make an automated docking manoeuvres with Tianhe-1, the core module of the Chinese space station.

Chinese Space Station supplemental module Wentian. Credit: Leebrandoncremer via Wikipedia

Wentian, which literally means “quest for the heavens,” is the first of two science modules intended to join with Tinahe-1 to complete the currently-planned elements of TSS and bring its all-up mass to around 66 tonnes (the ISS, by comparison, masses 460 tonnes). In addition, operations aboard the station can be added-to through the use of Tianzhou automated re-supply vehicles.

The module’s docking will be overseen by the three crew of the Shenzhou 14 mission. It will initially dock with Tianhe’s forward docking port, where it will remain during initial tests and check-out by the crew to confirm its overall condition. The crew will then commence initial science activities, which will include a live broadcast via Chinese state media.

At some point in the future, Wentian will be relocated to a side port on Tianhe’s forward docking hub to form one arm of an eventual “T” that will be made by the core module and the two science modules, leaving the forward port free for visiting crews, and the after port at the far end of Tianhe available for visiting Tianzhou vehicles.

Whilst classified a science module, Wentian is actually a multi-purpose facility. It includes an airlock of its own to enable crew members to complete space walks, it has an external robot arm of its own to assist with such spacewalks, and additional living space for 3 tiakonauts, allowing up to six to live in comfort on the station during hand-over periods. The first such hand-over (similar in nature to ISS handovers) is due to take place in December 2022, when the crew of Shenzhou 14 pass the station over to the 3-person Shenzhou 15 crew. However, prior to that event, the second science module, called Mengtian (“Dreaming of Heavens”), is due to be launched to the station in October.

NASA Sets Artemis-1 Launch Dates

On July 20th, 2022, NASA announced they are targeting three dates at the end of August / beginning of September for the first flight of their Space Launch System (SLS) super rocket which sits at the heart of their plans for a return to the Moon.

The Artmis-1 mission will launch an uncrewed Orion Multi-Purpose Crew Vehicle (MPCV) on an extended mission to cislunar space. Each of the three launch dates has different launch windows and mission durations:

  • August 29th: the launch window runs from 12:33 to 14:33 UTC, and would result in a 42-day mission ending with a splashdown on October 10th.
  • September 2nd: the launch window runs from 16:48 to 18:48 UTC, and would result in a 39-day mission splashing down on October 11th.
  • September 5th: the launch window opens at 21:12 UTC for 90 minutes, and would result in a 42-day mission splashing down on October 17th.
The Artemis-1 Space Launch System rocket, seen during the initial Wet Dress Rehearsal test in April 2022. Credit: NASA

Splashdown for all three launch opportunities will occur off the coast of San Diego, California.

The dates themselves have been defined based on the need to complete post-Wet Dress Rehearsal  test work on the vehicle. They all represent “long-class” flights for the Orion, with Artmis-1 originally being planned around shorter 4-week flights in order to test out all of its handling characteristics in cislunar space. However, given all of the delays thus far experienced with Artemis-1, NASA opted to push for these launch dates rather wait until the end of October when windows for shorter-during flights would open, together with a further rick of slippage of the launch back into 2023.

Continue reading “Space Sunday: galaxies, launches and health in space”