Love as an artistic expression in Second Life

Nitroglobus Roof Gallery: Lika Cameo, Gravity
Love can be scary only because you realize you care about someone as much as you care about yourself. You open your hearth knowing that it could be broken, however being vulnerable is the only way to allow your heart to feel true pleasure, joy and excitement, and make you feel that true bond and energy that is pulling you to belong to the other.

– from the introduction to Gravity at Nitroglobus Roof Gallery, May 2022

Over the years – as I recently noted in writing about the gallery’s 10th anniversary – Nitroglobus / Nitroglobus Roof Gallery has been the home to some of the most remarkable exhibitions of art I’ve witnessed in Second Life down the years; so much so that singling one out over the others is practically impossible. However, I have to say there is something very special to be found within Gravity, an exhibition of work by Lika Cameo that will be open throughout May 2022 at the gallery.

Nitroglobus Roof Gallery: Lika Cameo, Gravity

An exploration of the nature of love, Gravity presents a series of images created by Lika that reflect, either individually or in groups of three, poems on the subject. The majority of the latter are by Celestial Demon, and are not what you might call “traditional” sonnets such as Barrett Browning’s Sonnet 43. Rather, there are more deeply focused on specific emotions both light and dark that accompany out love for another.

The imagery created by Demon’s words is powerful; within the poems we can find obsession, freedom, contentment, happiness, need, desire, comfort … Along with them are three further poems on love. Two are by Pablo Neruda and the third is by Lika herself, and offer the aforementioned more traditional approach to expressing thoughts and reflections on the subject.

Nitroglobus Roof Gallery: Lika Cameo, Gravity

Taken on their own, the poems offer considerable insight into the nature of love its push/pull / yin/yang nature it embodies.

Alongside of them, Lika’s art is literally poetry in images. As a mixed media artist, Lika has an extraordinary ability to offer expression and narrative through her pieces. Preferring to work in black-and-white / monochrome (there is one colour trio included in Gravity), she fully demonstrate this ability within this exhibition. There is a stunning richness of life and motion within every single piece on display, a richness that does more than reflect the emotions of the poems, it becomes a visual synonym for the emotions expressed within the poems.

Nitroglobus Roof Gallery: Lika Cameo, Gravity

What is particularly stunning with Gravity is the mutualistic symbiosis between art and poetry. All of the pieces, whether singletons or trios, stand independent of the poems to which they have been paired, making this an exhibition that can be enjoyed purely as a visual immersion. Similarly, if one chooses to do so, the poems can be read and appreciated without reference to the images alongside time. When taken taken together, however, they mutually benefit one another and Gravity takes on a depth of life and meaning that captivates.

With this in mind, and while I could prattle on at length here about Gravity, I’m going to spare you and instead genuinely urge you to see the exhibition for yourself.

SLurl Details

Space Sunday: aerial views, infra-red images & a few notes

Debris Field From the Mars 2020 mission entry, descent and landing (EDL) systems as seen by the Ingenuity helicopter drone during its 26th flight on April 19th, 2022: to the left, the shattered backshell that helped protect rover and helicopter during entry in the Martian atmosphere. and to the right, the collapsed supersonic parachute that slowed the descent to subsonic speeds. Credit: NASA/JPL

Ingenuity, the Mars 2020 mission’s helicopter drone completed its 26th flight on April 19th, and it was something very special, as NASA revealed in a mission update published on April 27th.

As I reported in a recent Space Sunday article, the Mars 2020 rover Perseverance passed close to where its aeroshell – called the backshell – and the parachute used during the descent through the Martian atmosphere had landed after the rover and its rocket-powered skycrane had departed, and was able to image both from a distance at ground level. For its 26th flight, Ingenuity was tasked with flying over and around both backshell and parachute and taking a series of images.

Graphic showing the Mars 2000 EDL – entry decent and landing – and the use of the backshell and parachute. Credit: NASA/JPL

During the mission’s arrival on Mars in February 2021, both the aeroshell and the parachute performed vital roles. The former protected the rover and skycrane from the heat generated through the entry into Mars’ atmosphere and its supersonic descent, whilst the latter slowed that supersonic descent to subsonic speeds, allowing the rover and its rocket-propelled skycrane to drop free and fly clear.

Once separated, the backshell and parachute continued their descent and, in a very practical demonstration on why parachutes can only do so much in the tenuous atmosphere, reached the ground still travelling at an estimated 126 km/h. Hence while the conical backshell appears to have burst apart on impact.

The Mars 2020 mission backshell and supersonic parachute seen from Ingenuity as it traverses over the debris zone, April 19th, 2022. The black object, slight above centre on the left edge of the image is actually part of one of Ingenuity’s landing feet, not part of the backshell debris. This image has also been post-processed to give near-Earth normal lighting and colour definition. Credit: NASA/JPL

Imagining the backshell and parachute not only provides some stunning photographs, it also helps inform engineers on how well the hardware actually worked, and offer insights to help with upcoming missions – such as the Mars Sample Return mission, for which initial testing of elements of the EDL systems recently started.

Getting the images proved a fitting celebration for the first anniversary of Ingenuity’s maiden flight. Stating at 11:37 local time, with the Sun ideally placed to offer the best lighting, the 159-second flight saw the helicopter climb to a height of 8 metres before flying 192 metres to take its first image. It then moved diagonally across the debris zone, hovering to take a further nine images at pre-determined points. It then moved 75 metres clear of the debris field and landed, for a total flight distance of 360 metres, With the flight completed, Ingenuity had clocked up a total of 49 minutes flying time on Mars, with a total distance covered of 6.2 km.

A further view of the Mars 2020 mission backshell and supersonic parachute seen from Ingenuity on April 19th, 2022., seen under Mars daylight lighting. Credit: NASA/JPL

The images reveal the backshell survived its impact surprisingly well, and that its protective white covering also came through entry into the Martian atmosphere with very little heat scarring, while many of the 80 high-strength suspension lines connecting it to the supersonic parachute are visible and appear intact.

Only around one-third of the 21.5 metre diameter parachute is visible, however. Whilst smothered in surface dust, the ‘chute appears completely undamaged by the supersonic airflow during inflation, and it is thought that only a third can be seen because of the way in which it collapsed onto itself after the backshell impacted.

Perseverance had the best-documented Mars landing in history, with cameras showing everything from parachute inflation to touchdown. But Ingenuity’s images offer a different vantage point. If they either reinforce that our systems worked as we think they worked or provide even one dataset of engineering information we can use for Mars Sample Return planning, it will be amazing. And if not, the pictures are still phenomenal and inspiring.

– Ian Clark, Mars Sample Return Ascent Phase Lead

JWST Update

The James Webb Space Telescope has now completed all aspects of aligning the 18 segments of its massive primary mirror and is moving into the final phase of science instrument commissioning.

As I’ve previously reported in these pages, JWST, the most ambitious space telescope yet built, is located at the Earth-Sun L2 position, 1.5 million kilometres beyond the orbit of Earth relative to the Sun. In March the core work of aligning the 18 segments of the primary mirror was completed such that the telescope could capture crystal clear images in the infra-red directly through its optical systems.

However, and  as I noted at the time, the process of commissioning the science instruments on the telescope would likely require further adjustments to ensure the everything is correctly aligned for science image processing. This work was the first formal step taken in the commissioning process for the science instrument suite once it had been powered up and had reached its required operating temperature range, and on April 28th, NASA confirm the month-long process of very fine final adjustments had been successfully completed, and the science team is now ready to move forward into the final phase of JWST’s commissioning: calibrating the instruments.

The optical performance of the telescope continues to be better than the engineering team’s most optimistic predictions. Webb’s mirrors are now directing fully focused light collected from space down into each instrument, and each instrument is successfully capturing images with the light being delivered to them. The image quality delivered to all instruments is “diffraction-limited,” meaning that the fineness of detail that can be seen is as good as physically possible given the size of the telescope. From this point forward the only changes to the mirrors will be very small, periodic adjustments to the primary mirror segment.

– NASA JWST press release, April 28th, 2022

This NASA image contains images from each of the major instruments on the James Web Space Telescope (JWST) to ensure the telescope’s mirrors are correctly aligned to allow all instruments to product perfect images. Credit: NASA/STScI
The completion of the alignment work came with the release of a set of images from each of the telescope’s science instruments, as shown above. These instruments are:

  • The Near Infrared Camera (NIRCam): the primary imager covering the infra-red wavelength range 0.6 to 5 microns. It is capable of detecting light from the earliest stars and galaxies in the process of formation, star populations in nearby galaxies, the light from young stars in our own galaxy, and objects within the Kuiper Belt.
  • The Near InfraRed Spectrograph (NIRSpec): primarily designed by the European Space Agency (ESA) NIRSpec will operate in tandem with NIRCam over the 0.6 to 5 micron wavelengths to reveal the physical properties of objects emitting light at those wavelengths.
  • The Mid-Infrared Instrument (MIRI): also primarily the work ESA, MIRI has both a camera and a spectrograph operating in the 5 to 28 micron wavelengths – longer than our eyes see. As such, it will be able to “see” and reveal the properties of near and distant objects “invisible” to NIRCam and NIRSpec.
  • FGS/NIRISS: technically two instruments supplied by the Canadian Space Agency operating in the 0.8 to 5.0 micron wavelengths:
    • The Fine Guidance Sensor (FGS): allows Webb to point precisely, so that it can obtain high-quality images.
    • The Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument: designed for first light detection, exoplanet detection and characterisation, and exoplanet transit spectroscopy

The final work in calibrating these instruments is expected to take around a month to complete, and will also involve ordering the telescope to point to different deep space targets so that the amount of solar radiation striking its heat shield will vary, allowing the science team to confirm that the thermal stability for the instruments and mirrors is being maintained within the optimal operating temperatures.

A comparison in resolution power between the Spitzer infra-red telescope (2003-2020) and JWST (2022), using the same region of deep space. NASA/STScI / 

As a part of the alignment exercises, JWST was directed to image an area of space that had been used for aligning / calibrating the mirrors and instruments used on the Spitzer Space Telescope (2003-2020). While a direct comparison between Spitzer (with a primary mission diameter of just 85 cm), and JWST (with a primary mirror diameter of 6.5 metres) is little on the “apples and pears” scale, putting the two commissioning images side-by-side does reveal just how much more of the universe JWST will be able to reveal to us.

Continue reading “Space Sunday: aerial views, infra-red images & a few notes”