Space Sunday: 3D printed rockets; pi for a planet and solar cycles

A time-lapse image of a fuel tank for the Relativity Terran-1 rocket being constructed using 3D printing techniques. Credit: @thesheetztweetz

Not too many years ago, the only organisations that were seen as being able to operate space launch systems were governments, notably the United States, Russia, Japan, China and India, although France has a long track record of launch vehicle development, while  nations like the UK have also dipped a toe or two into the waters.

However, over the last 20 years, we’ve seen a major paradigm shift with launcher development that has seen much of it move away from government-sponsored development and purely into private hands (although actual launch contracts awarded by governments can oft help grease the wheels of commerce for these companies).

The most obvious commercial launch vehicle developers have frequently been mentioned in these pages: SpaceX, Blue Origin, United Launch Alliance, Northrop Grumman, and so on (note I’m deliberately avoiding certain names such as Arianespace, because while they are the oldest commercial launch provider in the world, they don’t actually develop the rockets they launch; and the big boys of Boeing and Lockheed Martin, as outside of their involvement in ULA, they are focused on government-funded launch vehicle development).

However, there are many, smaller commercial companies that are involved in launch vehicle development and operation. Two of the more interesting of these are Rocket Lab, which I have mentioned in these pages in the past, and Relativity Space.

Founded in 2006, Rocket Lab is the mini-me SpaceX of small payload launchers. Established by its current CEO, New Zealander Peter Beck, the company originally operated in Auckland, New Zealand, but now is primarily headquartered in the United States as a US company  (the New Zealand arm being a wholly owned subsidiary).

The Electron rocket with Rocket Labs’ CEO, New Zealander Peter Beck

Rocket Lab operates the Electron Rocket, flying commercial payloads of up to 300 kg to low Earth orbit (LEO) or up to 200 kg to a sun synchronous orbit (SSO). A two-stage vehicle, Electron uses the electric pump-fed Rutherford rocket motor in both stages, making it the first launch system to use an electric pump system to deliver fuel to the engines.

Currently an expendable launch system, Rocket Lab plan to follow in the footsteps of SpaceX and make the first stage of Electron reusable, although they will not be using a propulsive landing system like SpaceX, but will use parachutes / a parafoil. In addition, the company plans to start providing customers with an optional third stage for the vehicle that can provide a “kick” to motor payloads can use to circularise their orbits.

Up until the time of writing, the company has only launched out of a purpose-built facility on the Mahia Peninsula on New Zealand’s North Island, where it has a 30-year licence to launch rockets every 72 hours. To help with this, the facility offers two launch pad complexes; however, the real ability to meet such a high rate of launches (assuming Rocket Lab grows the customer list it needs to warrant such a fast launch rate) is in the rocket fabrication and assembly process.

The extensive use of composites in the fabrication of both the Electron rocket and its motors means that Rocket Lab can fabricate and assemble a launch vehicle every seven days.  Credit: Rocket Lab

Thanks to the high use of composite throughout the Electron and its motors which accounts for around 95% of parts in both, Rocket Lab has been able to develop a fully automated and very flexible fabrication facility that can produce all the composite parts for the single launch vehicle in just 12 hours. This in turn allows the company to assemble and test a new rocket every seven days.

Starting in 2020 – and potentially in the next couple of weeks – Rocket Lab will commence launch operations from the Mid-Atlantic Regional Spaceport, Wallops Island, Virginia, USA (located at the southern end of NASA’s Wallops Flight Facility). Should it go ahead, the UK’s proposed Sutherland Spaceport, Scotland, may also become a base of operations for Rocket Lab, offering launches alongside the UK’s Orbex, a company a small-scale, reusable launcher capable of delivering up to 150 kg to a 500 km SSO.

Through the long grass – an Electron Rocket undergoing static tests at Rocket Lab’s new launch facilities at the Mid-Atlantic Regional Spaceport, Wallops Island, Virginia, USA. Credit: Rocket Lab

As well as the commercial launch capabilities, Rocket Lab has also been developing its own satellite system – Photon – which the company has indicated could also be used as a carrier vehicle for small interplanetary science missions.

In this, CEO Peter Beck has long been a proponent of exploring Venus, and has been contemplating sending a small mission that planet for the last two years – something he believes Rocket Lab could achieve for as little as US $30 million, utilising Electron as the launcher and Photon as the ferry vehicle, delivering a small science probe massing around 37 kg to Venus. With the discovery of phosphine in the planet’s atmosphere (see Space Sunday: phosphine on Venus, test flights and Jupiter), Beck has indicated Rocket Lab may well accelerate these plans.

Rocket Lab has also developed is own satellite – Photon – which it is considering as the carrier for a small science mission to Venus in the wake of the discovery of phosphine in the planet’s atmosphere.  Credit: Rocket Lab

Continue reading “Space Sunday: 3D printed rockets; pi for a planet and solar cycles”