Space Sunday: of selfies, sprites, and black holes

CuriosityCuriosity, NASA’s Mars Science Laboratory rover has departed “Marias Pass”, a geological contact zone between different rock types on the slopes of “Mount Sharp”, some of which yielded unexpectedly high silica and hydrogen content.

As noted in a recent space update in these pages, silica  is primarily of interest to scientists, because high levels of it within rocks could indicate ideal conditions for preserving ancient organic material, if present. However, as also previously noted, it may also indicate that Mars may have had a continental crust similar to that found on Earth, potentially signifying the geological history of the two worlds was closer than previously understood. Hydrogen is of interest to scientists as it indicates water bound to minerals in the ground, further pointing to Gale Crater having once been flooded, and “Mount Sharp” itself the result of ancient water-borne sediments being laid down over repeated wet periods in the planet’s ancient past.

Curiosity actually departed “Marias Pass” on August 12th, after spending a number of weeks examining the area, including a successful drilling and sample-gathering operation at a rock dubbed “Buckskin”, where the rover also paused to take a “selfie”, which NASA released on August 19th. It is now continuing its steady climb up the slopes of “Mount Sharp.”

A low-angle self-portrait produced from multiple images captured by the Mars Hand Lens Imager (MAHLI) camera mounted on the "turret" at the end of the rover's robot arm. The images were taken on August 5th, as the rover was parked at the "Buckskin" rock formation from which it gathered drill samples
A low-angle self-portrait produced from multiple images captured by the Mars Hand Lens Imager (MAHLI) camera mounted on the “turret” at the end of the rover’s robot arm. The images were taken on August 5th, as the rover was parked at the “Buckskin” rock formation from which it gathered drill samples

As it does so, initial analysis of the first of the samples gathered from “Buckskin” is under-way. It is hoped with will help explain why the “Marias Pass” area seems to have far higher deposits of hydrogen bound in its rocks than have previously been recorded during the rover’s travels. This data has been supplied by the Dynamic Albedo of Neutrons (DAN) instrument on Curiosity, which almost continuously scans the ground over which the rover is passing to gain a chemical signature of what lies beneath it.

“The ground about 1 metre beneath the rover in this area holds three or four times as much water as the ground anywhere else Curiosity has driven during its three years on Mars,” said DAN Principal Investigator Igor Mitrofanov of Space Research Institute, Moscow, when discussing the “Marias Pass” DAN findings. Quite why this should be isn’t fully understood – hence the interest in what the drill samples undergoing analysis might reveal.

A stunning vista: the slopes of "Mount Sharp" as seen by Curiosity as it commenced the upward drive away from "Marias Pass". Captured by the rover's Mastcam systems, the image shows an intriguing landscape, with the gravel and sand ripples typical of much of the terrain over which the rover has passed in the foreground. In the middle distance sit outcrops of smooth, dust-covered bedrock, above which sit sandstone ridges. On the horizon sit rounded buttes, rich in sulfate minerals, suggesting a change in the availability of water when they formed - click image for the full size version
A stunning vista: the slopes of “Mount Sharp” as seen by Curiosity as it commenced the upward drive away from “Marias Pass”. Captured by the rover’s Mastcam systems, the image shows an intriguing landscape, with the gravel and sand ripples typical of much of the terrain over which the rover has passed in the foreground. In the middle distance sit outcrops of smooth, dust-covered bedrock, above which sit sandstone ridges. On the horizon sit rounded buttes, rich in sulfate minerals, suggesting a change in the availability of water when they formed – click image for the full size version

The drilling operation itself marked the first time use of the system since a series of transient short circuits occurred in the hammer / vibration mechanism in February 2015. While no clear-cut cause for the shorts was identified, new fault protection routines were uploaded to the rover in the hope that should similar shorts occur in the future, they will not threaten any of Curiosity’s systems.

A Flight over Mars

With all the attention Curiosity gets, it is sometimes easy to forget there are other vehicles in operation on and around Mars which are also returning incredible images and amounts of data as well – and were doing so long before Curiosity arrived.

One of these is Europe’s Mars Express, the capabilities of which come close to matching those of NASA’s Mars Reconnaissance Orbiter. Mars Express has been in operation around Mars for over a decade, and in that time has collected an incredible amount of data.

At the start of August, ESA released a video made of high resolution images captured by the orbiter of the Atlantis Choas region of Mars. This is an area about 170 kilometres long and 145 wide (roughly 106 x 91 miles) comprising multiple terrain types and impact craters, thought to be the eroded remnants of a once continuous ancient plateau. While the vertical elevations and depressions have been exaggerated (a process which helps scientists to better understand surface features when imaged at different angles from orbit), the video does much to reveal the “magnificent desolation” that is the beauty of Mars.

Continue reading “Space Sunday: of selfies, sprites, and black holes”

Space Sunday: images of meteors, aurorae and comets

A composite image of the Perseids by Jeff Sullivan
A composite image of the Perseids by Jeff Sullivan showing roughly half of the meteors he captured on film in a 3-hour period over the Mojave Desert, California, on August 13th

Visually, it’s been a stunning week for astronomy and space science. We’ve had amazing images of the Perseids reaching this year’s peak as the Earth ploughs through the heart of the debris cloud left by comet Swift-Tuttle; there have been amazing shots of the Northern Lights Tweeted to Earth from the International Space Station; and another comet – 67P/Churyumov–Gerasimenko has shown us just how active a place it came become under the influence of the sun.

As I noted last Sunday, the Perseids meteor shower promised to be quite a spectacle this year, once again coinciding with a new moon which would leave the night skies particularly dark – ideal circumstances with which to see the meteor display for those able to get away from more Earthbound light pollution.

Gary Pearson caught this incredible meteor trail over Brancaster, Norfolk, UK on August 12th - a stunning display from an already vaporised particle of dust
Gary Pearson caught this incredible meteor trail over Brancaster, Norfolk, UK on August 12th – a stunning display from an already vaporised particle of dust

The Perseids – so-called because they appear to originate from the constellation of Perseus – are always a popular astronomical event; during the peak period, it is possible to see between 60 and 100 meteors per hour. They are the result of the Earth travelling through a cloud of dust and debris particles left by  Comet 109p/Swift-Tuttle’s routine passage around the Sun once every 133 years.

As the comet last passed through the inner solar system in 1992, the debris left by the outgassing of material as it was heated by the Sun is extensive, hence the brilliance of the Perseids displays. As noted, with the peak of the Earth’s passage through the debris (which lasts about a month overall from mid-July through mid-August, so there is still time to see them) occurring at a time when there would be a new moon, 2015 promised to offer spectacular opportunities for seeing meteors – and duly delivered.

Amateur astronomers Stojan Stojanovski, Kristijan Gjoreski and Igor Nastoski of the Ohrid Astronomy Association in Ohrid, Macedonia
Amateur astronomers Stojan Stojanovski, Kristijan Gjoreski and Igor Nastoski of the Ohrid Astronomy Association in Ohrid, Macedonia, captured this meteor as the Sun set on August 13th

Across the northern hemisphere between August 12th and August 14th, 2015, the Perseids put on some of the most spectacular displays seen in our skies in recent years – and people were out with their cameras to capture the event.

The highest concentration of meteors was visible after 03:00 local time around the world, although by far the best position to witness the event was in the northern hemisphere, with things getting under way as the skies darkened from about 23:00 onwards in most places.

It is not uncommon for the shower to coincide with a new moon (2012, for example was the same). However, this year’s display has been particularly impressive for those fortunate enough to have clear skies overhead.  “I have been outside for about 3 hours” Ruslan Merzlyako reported on August 13th. “And the results are bloody fantastic! Lots of Perseids and Northern Lights had just exploded in the sky right over my home town. For now, I am not going to argue with Danish weather, because I am 200 percent happy!”

A composite image by Danish photographer Ruslan Merzlyakov, who also caught the background glow of the Northern Lights in the skies of Denmark
A composite image by Danish photographer Ruslan Merzlyakov, who also caught the background glow of the Northern Lights in the skies of Denmark

You can find more images of this year’s Perseids event on Flickr.

Aurora From Space

Staying with the Northern Lights – more formally referred to as the Aurora Borealis –  the current commander of the International Space Station, Scott Kelly, captured some stunning images of the event, some of which he shared via his Twitter feed,  during the 141st day of his current mission – the joint US / Russian Year In Space – aboard the station.

“Aurora trailing a colourful veil over Earth this morning. Good morning from @spacestation!” he tweeted at the start of the series, which included a remarkable time-lapse video. With a further image, he commented, “Another pass through #Aurora. The sun is very active today, apparently.”

Continue reading “Space Sunday: images of meteors, aurorae and comets”

Space Sunday: active Ceres, open Mars, and shooting stars

Dawn mission patch (NASA / JPL)Dawn, the NASA / ESA joint mission to explore two of the solar system’s three “protoplanets” located in the asteroid belt between the orbits of Mars and Jupiter, continues to intrigue scientists as it studies Ceres, the second of its primary targets.

As I reported in June 2015, Dawn is part of a broader effort to better understand the origins of the solar system and how the planets actually formed; all of which might give us greater understanding of how life arose here on Earth.

Launched in September 2007, Dawn arrived at Ceres in March 2015, after a 2.5 year transit flight from Vesta, its first destination, which it had been studying for 14 months following its arrival in July 2011. Because of their relative size – Ceres accounts for around one-third of the total mass of the asteroid belt – both of these airless, rocky bodies are regarded as dwarf planets, rather than “simple” asteroids. However, Ceres is proving to be quite the conundrum.

At the start of July, Dawn completed the first part of its high-altitude survey of Ceres and fired its low-thrust ion drive to start a series of gentle manoeuvres to reduce its orbit around from 4,400 kilometres (2,700 miles) to 1,450 kilometres (900 miles). It’s now hoped that from this lower orbit, the space craft will be able to discover more about some of Ceres’ more mysterious features.

One in particular has been the subject of much debate. It started when Dawn imaged a series of bright spots within the crater Occator as it made its initial loop around Ceres to enter orbit. Since that time, it has repeatedly images the bright spots, and their presence has also been confirmed by the Hubble Space Telescope.

A June 6th image of the bright spots within a crater on Ceres, captured by Dawn on June 6th, 2015, from a distance of
A Dawn spacecraft image of the bright spots within a crater on Ceres, captured on June 6th, 2015. With the vehicle now entering a much lower altitude mapping mission, it is hoped that even more detail on the spots  – and the faint haze discovered within the crater – will be obtained

Currently, it is believed the bright marks might either be salt deposits or water ice (the European  Herschel Space Observatory had previously found evidence of water vapour on Ceres).  However, while the science team aren’t leaning either way, their mission briefing on July 21st, leant some weight to the bright spots perhaps being water ice. This came in the form of an announcement that he 92 kilometre (57 mile) wide Occator has its own, very localised atmosphere focused around the bright areas.

The evidence for this comes from images of the crater taken from certain angles which reveal a thin haze covering around half of the cater, but not extending beyond its walls. Th thinking is that this haze is perhaps the result of the ice in the bright area – if they are ice – sublimating out.

However, if this is the case, it actually raises a further mystery: why the haze? Generally, such sublimation would lead to the resulting gases dissipating very quickly, without forming a haze. One hypothesis is that Ceres’ gravity, which is somewhat higher than might be expected for a body of its size) may be and influencing factor.

The 5 km high "pyramid" mountain pokes up above the limb of Ceres. Flat-topped, it has streaks of bight mateiral on its flanks giving the impression something has been flowing down it.
The 5 km high “pyramid” mountain pokes up above the limb of Ceres. Flat-topped, it has streaks of bright material on its flanks giving the impression something has been flowing down it.

The bright spots aren’t the only curious feature on Ceres. Dawn has also spotted numerous long, linear features whose cause is unknown, as well as one big mountain that mission team members have dubbed “The Pyramid.” This massif, about 5 km (3 mi) in height, and around 30 km (19 mi) across at its base, is oddly flat-topped and has streaks of bright material on one of it flanks, as if something has been cascading down the slope. What this might indicate has planetary scientists scratching their heads at this point.

With all the mysteries thrown up by New Horizon’s recently flyby of Pluto, and Dawn’s discovery of mysterious features on Ceres, it really is becoming a case that the tiny worlds of our solar system are perhaps the most perplexing.

Three years ago, in August 2012, NASA’s Mars Science Laboratory rover, Curiosity, arrived in Gale Crater, Mars. Since that time, the rover has made some remarkable discoveries, as reported in this blog over the years.

To mark the anniversary of the landing, NASA has launched two new on-line tools designed to open the mysterious terrain of the Red Planet to anyone with an interest in planetary exploration.

Experience Curiosity allows users to journey along with the one-tonne rover on its Martian expeditions. The program simulates Mars in 3-D, using actual data returned by the rover and NASA’s Mars Reconnaissance Orbiter (MRO). It also uses a  game-ready rover model based entirely on real mechanisms.

Experience Curiosity allows you to learn about the rover using a 3D model which can be manipulated and driven, using a WebGL application
Experience Curiosity allows you to learn about the rover using a 3D model which can be manipulated and driven, using a WebGL application

User are able to drive the rover, examine it, call up data on key components, witness the driving view from different cameras on the rover, and operated the robot arm. Activities are a little basic, but as this appears to be a part of NASA’s Eyes On project, capabilities may grow over time.

Mars Trek is a much more expansive tool – one which is actually being used in the planning for the Mars 2020 rover mission. It features interactive maps, which include the ability to overlay a range of data sets generated from instruments aboard spacecraft orbiting Mars, and analysis tools for measuring surface features. Standard keyboard gaming controls are used to manoeuvre the user across Mars’ surface, and topographic data can be exported to 3D printers to allow the printing of physical models of surface features.

The map view and be manipulated in 2D or 3D, data on various surface missions is provided, compete with the ability to zoom into the surface locations for these missions, making for a visually impressive model.

Continue reading “Space Sunday: active Ceres, open Mars, and shooting stars”

Space update: Pluto, Mars, and Earth’s big cousin

A composite image of Pluto an Charon, show to scale with one another and in true colour, as they were images by New Horizons on July 15th, 2015 (image courtesy of  NASA/ APL / JHU)
A composite image of Pluto and Charon, show to scale with one another and in true colour, as they were imaged by New Horizons on July 14th, 2015

New Horizons is continuing outbound from the Pluto-Charon system, its primary mission  complete. A new phase of the mission has now begun: returning all the data gathered safely to Earth; a process that is going to take an estimated 16 months to complete. Even so, and as indicated in my last report, what has already been received has been enough to turn much of planetary science on its head.

During a mission briefing on July 24th, 2015, Alan Stern, the New Horizons principal investigator and members of the science team provided a further update on the mission, and revealed some of the more stunning images captured by the spacecraft during the close approach phase of the mission. One of the most striking of these was a picture snapped by New Horizons just seven hours after close approach, when it was already 2 million kilometres (1.2 million miles) from Pluto.

The image shows the dark disc of Pluto’s night side (which will not see the light of the Sun for another 20 years), surrounded by a halo of atmosphere, 130 kilometres (80 miles) thick, backlit by the distant Sun. Within the atmosphere sit two bands of thick haze, one around 50 kilometres (30 miles) altitude and the second at around 80 kilometres (50 miles) altitude.

Taken from a distance of 2 million kilometres (1.25 million million) beyond Pluto, this black-and-white LORRI images, captured 24 hours after closest approach, reveals the haze of Pluto's atmosphere as sunlight is filtered through it
Taken from 2 million kilometres (1.25 million miles) beyond Pluto, this black-and-white LORRI images, captured just 7 hours after closest approach, reveals the haze of Pluto’s atmosphere as sunlight is filtered through it

These bands of haze are believed to be the result of ultraviolet sunlight striking the upper reaches of Pluto’s atmosphere, breaking apart the methane gas there, giving rise to more complex hydrocarbon gases such as ethylene and acetylene. These heavier gases then descend into the colder regions of Pluto’s atmosphere, condensing as ice particles, which are seen by New Horizon’s instruments as the bands of haze.

The ice particles are further acted upon by ultraviolet sunlight so that tholins are formed. Tholins are large complex organic aerosols thought to contain some of the chemical precursors of life. These gradually fall out of the atmosphere to mix with hydrocarbons on Pluto’s surface, giving it the distinctive colouring we see in images like those given below.

Pluto by day: this image of Pluto, captured on July 14th, is the clearest true-colour image of the dwarf planet so far returned by New Horizons and shows deails down to 2.2 kilometres across
Pluto by day: this image of Pluto, captured on July 14th, is the clearest true-colour image of the dwarf planet so far returned by New Horizons, and shows details down to 2.2 kilometres across

The July 24th briefing also revealed some of the most detailed images of Pluto’s sunlit side yet published, starting with the true colour image shown above. This shows Pluto in twice the level of detail as the July 13th image published by NASA, revealing surface features as small as two kilometres across (the ultra-high resolution images LORRI has captured will eventually reveal surface features as small as 50 metres across). Featured prominently and unmistakably in the image is Pluto’s light-coloured “heart”, informally named the “Tombaugh Regio” in honour of Pluto’s discoverer, Clyde Tombaugh.

This huge region is divided into two parts, defined by the two “lobes” of the heart. On the left (west side) is the relatively smooth expanse of the “Sputnik Planum”, roughly the size of Texas.The is largely composed of a thick layer of nitrogen, methane and carbon monoxide ice. That it is almost completely without craters suggests it is much younger than the rest of Pluto’s visible surface; but how it formed has yet to be determined.

An increased magnification image of “Tombaugh Regio” and its surroundings. On the left of the “heart” (the western side of the planet) lies the smooth form of “Sputnik Planum”; to the right, is the eastern “lobe” of the “heart”, which shows similar bright material to that found on “Sputnik Planum”, but spread within more chaotic terrain

The right side of the “heart” is also brightly-coloured, indicating the presence of ices similar in nature to those in “Sputnik Planum”, but it also shows a much rougher terrain as well. Further bright, icy material also extends from the “point” of the “heart” into the southern polar regions of Pluto, again mixing with rougher terrain.

While it is not clear what actually gave rise to the icy expanse of “Sputnik Planum”, it is not believed the same mechanism is responsible for the ice in either eastern lobe or which extends southwards from the “heart”. These are believed to be the result of material from “Sputnik Planum” being carried into these areas, where it is gradually “painting over” surface features there.

An enlarged view of the southern area “Sputnik Planum” bordering the Lovecraft-inspired “Cthulhu Region” showing how the chaotic terrain around the “Hillary Montes” and “Norgay Montes” has been invaded by icy deposits, possibly carried into them as snow by wind action, or even the result of glacial activity

Continue reading “Space update: Pluto, Mars, and Earth’s big cousin”

Space Sunday: perfectly Pluto

New Horizons (travelling approximately left-to-right) passes Pluto on July 14th, 2015, with Charon beyond, in NASA's Eyes on Pluto simulation
New Horizons (travelling approximately top left to bottom right) passes Pluto on July 14th, 2015, with Charon beyond, in NASA’s Eyes on Pluto simulation

It’s a mission that cost $650 million to mount, took 5 years of planning and building prior to spending 9.5 years in space as one of the fastest man-made objects yet built (and the fastest ever at launch); it has travelled some 4.76 billion kilometres to reach its destination, swinging by and studying Jupiter  (the first time we’ve done so close-up in over decade) in the process. All this for a close encounter which, due to the speed of the vehicle, could be measured in a mere hours.

But what an encounter!

I’m of course referring to NASA’s New Horizons mission which, on July 14th, 2015, after all of the above, flashed by the Pluto-Charon system precisely on target and just 72 seconds ahead of it’s  predicted arrival time of 11:49:59 UTC at its closest point to Pluto.

Encounter trajectory: New Horizons' flight path is shown is red, running right-to-left in 10 minute time increments. The times for the vehicle's closest encounters with Pluto and Charon on July 14th, 2015, are given, together with the times of occultation - when both worldlets would be directly between the spacecraft and Earth
Encounter trajectory: New Horizons’ flight path is shown is red, running right-to-left in 10 minute time increments. The times for the vehicle’s closest encounters with Pluto and Charon on July 14th, 2015, are given, together with the times of occultation – when both worldlets would be directly between the spacecraft and Earth – click for full size

Obviously, the overall encounter has been going on for some time now, as I previewed in my  Space Sunday report of July 12th: what NASA called the “distant encounter phase” started in January 2015, and even now, as New Horizons heads away from Pluto and Charon, observations are still being made. But the mission has always been about the hours immediately either side of that point of closest approach, when New Horizons flashed by Pluto at a speed relative to the planet of 13.77 km/s (8.56 miles per second).

The close approach wasn’t something that could be followed in real-time, the time delay in transmissions from the probe to Earth being some 4.5 hours. This being the case, NASA kept people informed with images and information recorded in the hours leading-up to the period of closest approach, such as a stunning image of Pluto captured by New Horizon’s LORRI and Ralph instruments on July 13th. Since then, they’ve been releasing a steady stream of the initial images that have been returned by the probe.

July 13th: two views of Pluto. On the left is an approximate true-colour image of the surface of Pluto, captured by the LORRI imaging system on New Horizons, and colour-enhanced by data obtained by the Ralph suite of instruments. On the right, a false-colour image indicating the compositional differences comprising Pluto's surface
July 13th: two views of Pluto. On the left is an approximate true-colour image of the surface of Pluto, captured by the LORRI imaging system on New Horizons, and colour-enhanced by data obtained by the Ralph suite of instruments. On the right, a false-colour image indicating the compositional differences comprising Pluto’s surface.

Pluto also appears to be an active planet – more so than had been imagined – with distinct compositional difference across its surface, making understanding of some of its characteristics difficult, so it is going to be some time before a range of questions relating to Pluto’s formation, development, etc., are liable to be answered, as many of them are going to have to wait for the arrival of very high-resolution lossless images from the probe, some of may now be received until well into next year (transmission of all the data recorded by New Horizons will take some 16 months).

In particular, New Horizons focused on a bright region positioned towards the centre of the of Pluto’s sunlit side and initially dubbed “Pluto’s Heart” due to its shape (seen  most clearly in the image above left). Now informally christened “Tombaugh Regio”, after Pluto’s discoverer, Clyde Tombaugh,  the region has been of interest to the science team due to its apparent “youthful” appearance: it is relatively crater-free, suggesting the surface has undergone significant re-working compared to the surface features around it, which are far more heavily cratered.

The region is home to a series of intriguing features, including the “Norgay Montes”, named after Tenzing Norgay, Edmund Hillary’s companion on the 1953 ascent of Mount Everest. This is a range of mountains rising some 3,300 metres (10,000 feet) above the surrounding plains, and which are estimated to be around 100 million years old, making them one of the youngest surface features seen in the solar system (younger than the Appalachian Mountains in North America, for example). There are believed to be a exposed region of Pluto’s bedrock, itself likely to be heavily comprised of water ice.

Continue reading “Space Sunday: perfectly Pluto”

Space Sunday: Pluto – the history of a brief encounter

Pluto (right) and Charon, as captured by the LORRI instrument aboard NASA's New Horizon's probe on July 8th, 2015. The colour of Pluto has been obtained by combining the image with data gathered by another instrument on the spacecraft, called Ralph
Pluto (right) and Charon, as captured by the LORRI instrument aboard NASA’s New Horizon’s probe on July 8th, 2015. The colour of Pluto has been obtained by combining the image with data gathered by another instrument on the spacecraft, called Ralph

Tuesday, July 14th promises to be a major day in the annals of space exploration, as the deep space probe New Horizons hurls through the Pluto-Charon system, making its closest approach to both, allowing us to gain our best views yet of this binary pairing of dwarf worlds and their little nest of moonlets.

The mission is already fast approaching the 10th anniversary of its launch (January 19th, 2006),  with the overall mission (from inception to the present day) already  almost 15 years old – although the planning for a Pluto mission goes back a lot further than that. Getting to the Pluto-Charon system has been a remarkable feat.

Originally, Voyager 1 had been provisionally scheduled to make a Pluto flyby as a part of its half of the “grand tour” of the solar system, using its encounter with Saturn to swing the probe on to a rendezvous with Pluto in 1986. In the end, Saturn’s Mighty moon Titan was considered a more valuable target for study, and the laws of celestial mechanics meant that a study of Titan and a swing-by of Saturn suitable to send the mission on to Pluto were mutually exclusive.

In the 1990s various missions to Pluto were proposed, ranging in size from the huge Mariner II mission, utilising an update on NASA’s veritable Mariner class probes, weighing two tonnes, down to the tiny Pluto 350, a comparatively tiny vehicle massing just 350 kilogrammes (772 pounds). These evolved, through short-lived programmes such as the Pluto Fast Flyby mission and the Pluto-Kuiper Express mission to eventually become New Horizons in 2001, a mission conceived and operated by the Applied Physics Laboratory, which often operates in partnership with NASA’s Jet Propulsion Laboratory.

At launch, New Horizons became the fastest spacecraft ever launched, using an Atlas V booster with no fewer than five strap-on solid rocket boosters. In addition, a high-powered third stage was used to boost it directly onto a solar escape trajectory – something which required the vehicle to achieve a velocity of over 16 kilometres per second (56,000 km/h or 37,000 mph) following launch. To put that in perspective, such was New Horizons’ velocity that it had passed beyond the orbit of the Moon (an average of 384,400 km / 238,900 miles from Earth) less than nine hours after launch.

The nuclear-powered (RTG) New Horizons - one of the fastest man-made craft ever made to date, now closing on the Pluto-Charon system
The nuclear-powered New Horizons – one of the fastest man-made craft ever made to date, now closing on the Pluto-Charon system The RTG system which provides electrical power through the radioactive decay of plutonium, can be see in the upper right of the vehicle in the main image, alongside the inset image of New Horizons under construction

Just under 3 months after launch, and travelling at over 21 kilometres a second, (76,000 km/h; 47,000 mph), New Horizons passed beyond the orbit of Mars, heading onwards for Jupiter, and a manoeuvre referred to a gravity assist.

Reaching the Jovian system in September, 2006, New Horizons was able to stretch its scientific legs, when it started observing Jupiter and its moons from a distance of 291 million kilometres (181 million miles). Over the next 6 months, the craft continued to close on Jupiter, gathering a huge amount of data along the way to add to our understanding of the biggest planet in the solar system, its complex weather systems and atmospheric composition, and its ever-growing system of smaller moons, many of which perform a vital role is “shepherding” Jupiter’s thin ring system.

Jupiter

This was the first real opportunity to observe Jupiter and its moons since the end of the Galileo mission in 2003, and New Horizons did so spectacularly well, passing within 2.3 million kilometres of the planet and using its gravity to further increase its speed by 14,000 km/h (9,000 mph), shortening the journey time to Pluto by some 3 years.

Following the Jupiter mission, the vehicle went into a hibernation mode, allowing it to reduce the power drain on its nuclear “battery”, the radioisotope thermoelectric generator (RTG) which provides the vehicle with all its electrical power (and which itself was the back-up unit for the Cassini mission which is still in operation around Saturn, 18 years after its launch).

During the vehicle’s hibernation, things were changing with regards to Pluto. Until the 1990s, it had always been classified as a planet – albeit one with an unusual orbit, which is both sharply inclined to the plane of the ecliptic in which the other planets of the solar system orbit, and highly elliptical, bringing it closer to the Sun than Neptune during certain periods.

Eris and Dysnomia (bright spot, lower left) imaged by the Hubble Space Telescope in 2007.
Eris and Dysnomia (bright spot, lower left) imaged by the Hubble Space Telescope in 2007.

Both of these factors, coupled with Pluto’s relatively small size, suggested that it was more of a “captured” object from the Scattered Disc, a region of the Solar System between Neptune and the Kuiper Belt  that is sparsely populated by icy minor planets (Pluto’s orbit around the Sun actually sits within the Scattered Disc).

In 2005, while New Horizons was sleeping,  astronomers at Mount Palomar Observatory imaged Eris, a Scattered Disc object, complete with a moon of its own (Dysnomia), which is some 27% more massive than Pluto. This discovery, coupled with the fact that the Scattered Disc may be the home of other objects of similar size, caused the International Astronomical Union to officially define the term “dwarf planet” in 2006, and downgrade Pluto’s status to match – although not without a certain amount of controversy and protest.

Continue reading “Space Sunday: Pluto – the history of a brief encounter”