Mars Monday: Ingenuity flies

Ingenuity hovers 3m above the surface of Jezero Crater, Mars, watched by the Mars 2020 rover Perseverance. Credit: NASA/JPL

April 19th saw aviation and space flight history made 288 million kilometres from Earth, when a tiny drone-like craft weighing just 1.8 kg spun-up two contra-rotating rotor blades, each 1.2 metres in diameter, to 2,500 rpm and then rose into the tenuous atmosphere of Mars to a height of 3 metres, hovered rotated about its vertical axis, then descended to land on the Martian surface once more.

Ingenuity, a proof-of-concept system to test the feasibility of controlled, powered flight on Mars, is a remarkable little vehicle that holds great promise for the future of the exploration of that world. While this initial flight was short – under a minute in total length from spinning-up its rotors to touch-down, it opens the door to more extensive flights over the coming days that will see the vehicle complete more complex manoeuvres. In doing so, it will provide vital information on the behaviour of rotary vehicles on Mars, vehicles that could in the future provide enormous additional potential and capabilities to future robotic missions on Mars and eventually support human missions.

The flight occurred at 07:31 UTC on Monday, April 19th, with telemetry being recorded by the helicopter’s own systems and relayed to the Mars 2020 Perseverance rover, which also recorded the event using its Mastcam-Z camera system and its navigation cameras. The initial data from the flight was then transmitted to Earth some three hours later, with additional images and video being transmitted throughout the day.

The first indication of the success of the flight came not through any pictures but via a simple graphic track of altimeter readings made by Ingenuity. Mostly flat to show the vehicle was sitting on the ground, the track was marked by a sudden “bump” recording the vehicle rise to just over 3 metres, its hover, and then its descent. It was enough to get the helicopter’s flight team – a handful at JPL practising social distancing in a large room, the rest working from home – rejoicing. But the chart was just the opening treat.

The altimeter data track from Ingenuity was the first solid indication that Ingenuity had successfully flown. Credit: NASA/JPL

Following the initial receipt of data, still images in low-resolution captured by Perseverance’s navigation cameras clearly showed the helicopter “jumping” between to close-together points, indicating that during the period between the images, it had flown and landed. However the biggest treat came later in the day with a stream of frames captured by the Mastcam-Z system on the rover.  When strung together, these produced a video of the flight.

Ingenuity is a project more than six years in the making, and has uniquely involved not only multiple NASA space and science centres, but also their aviation research and development centres as well. It was actually a late addition to the Mars 2020 mission, requiring some extensive changes to the rover that had to be made in order to mount the helicopter beneath the rover’s belly, and include a mechanism for deploying Ingenuity onto the surface of Mars.

Ahead of the Mars 2020 launch, Ingenuity want through extensive testing to simulate flight conditions on Mars. This involved placing the vehicle a large vacuum chamber filled with carbon dioxide to a pressure to match the surface atmospheric pressure on Mars – which is the equivalent of Earth’s at an altitude of 30 km. To simulate the low Martian gravity (38% that of Earth’s), a special rig was attached to the demonstrator to counter 62% of its mass. Finally, a wall of 900 computer fans was used to simulate typical surface wind speeds on the surface of Mars, as recorded by the Mars Science Laboratory rover Curiosity.

 All of this allowed engineers to define the optimal size of the helicopter’s rotors, balancing them against Ingenuity’s mass and size and to determine things like their required rate of spin to achieve flight – between 2,400 and 2,500 rpm  – five times the speed of Earth-based helicopter rotors.

A low-resolution image taken by Ingenuity’s downward point camera showing the helicopter’s shadow on the surface of Mars as it hovers at a height of 3m. Credit: NASA/JPL

Even so, flying an engineering test model in a controlled environment is very different to doing the same on Mars – hence a lot was riding on this first flight.

Ahead of it, the area selected for the test flight sequence and previously dubbed “the airfield” was unofficially renamed “Wright Brothers Field”. Having safely dropped off the helicopter there in early April, Perseverance had driven some 70 metres from Ingenuity at a rise overlooking the area that NASA has dubbed “Van Zyl Overlook” in honour of key Ingenuity team member Jakob van Zyl, who passed away unexpectedly in August 2020. From this vantage point it is hoped that the rover will be able to record all of Ingenuity’s flights.

Captured by Ingenuity’s downward-pointing camera, this image shows Ingenuity’s shadow on the surface of Mars just before it lands. Two of the vehicle’s legs can be seen top left and top right, while the 2,500 rpm spin of the contra-rotating blades used to provide lift makes them appear semi-transparent. Credit: NASA/JPL

Prior to the flight, and as noted in my previous Space Sunday update, the flight team had to make some changes to the software overseeing Ingenuity’s first flight. Not only have these adjustments worked well, it is hoped that they will remove any need for running a complete software re-installation on the vehicle – a process that could take several days to complete and severely impact the ability to complete all of the remaining four planned test flights. However, the option of a full re-installation is being kept open should further issues arise with the timing and control processes.

Inn the meantime, it’s going to be a few days before all of the data from the first flight has been analysed. As such, the next flight for Ingenuity has yet to be scheduled.

When it does goes ahead, it should see the helicopter rise to an altitude of around 5 metres, then translate into horizontal flight for a distance of some 50 metres before coming to a stop, then returning once more to land.

As it is, the initial telemetry from Ingenuity shows it is a good health – better, in fact than before it lifted off. This is because the flight removed dust that had been accumulating on the solar cells located above the vehicle’s rotors, interfering with their efficiency.

In all the Mars Helicopter project has three goals:

  • Show via Earth-based testing that it should be possible for a heavier-than-air vehicle  to take flight on Mars – achieve via the vacuum tests described above.
  • Achieve stable flight on Mars – now achieved through this first flight.
  • Obtain data that can inform engineers as to the design and capabilities required by future aerial vehicles that could be deployed to Mars – and also elsewhere in the solar system, such as Saturn’s moon Titan.
Following the flight, the ICAO has officially designated Ingenuity the first of aircraft type IGY, and gave its testing area on Mars the airport code JZRO. image credit: NASA

Continue reading “Mars Monday: Ingenuity flies”

Space Sunday: Ingenuity readies for flight

Ingenuity hangs under the belly of Perseverance at the end of several days of initial deployment.Credit: NASA/JPL

This past week has seen the Mars helicopter Ingenuity successfully deployed onto the surface of Mars in readiness for its first flight – although NASA has announced the flight itself has been delayed.

As I noted in my previous Space Sunday report, the helicopter was unpacked over several days (the work actually commencing prior to that report appearing). It took several days because each stage of the deployment had to be verified to ensure it had been correctly completed using the WATSON camera on  the rover’s robot arm imaging the helicopter from several angles after each phase of the deployment so that engineers on Earth could confirm everything looked correct. However, everything went as expected, and by March 31st (UTC), Ingenuity was in an upright position under the rover, but still connected to it via the power umbilical and backplane support.

At this point proceedings were paused whilst systems were given a final check-out prior to the command being given to release the helicopter to drop the 10-13cm down onto the Martian surface. Once released, Ingenuity would be on its own power-wise, with a limited period in which to charge up its batteries using sunlight, so the engineering team wanted to run through final verification that everything was OK.

On Sunday, April 4th, the Jet Propulsion released images revealing that final step of deployment had been completed, and Ingenuity is standing on Mars, Perseverance having moved several metres away to establish line-of-sight communications with the helicopter.

Caught by the Hazcam system on Perseverance, Ingenuity sits on the surface of Mars after the rover had initially moved away from it following release. This image was taken on mission Sol 43 (Sunday, April 4th, 2021) at a local mean solar time of 15:14. It is a raw image that has not been white balanced for Earth lighting. Credit: NASA/JPL

The next challenge is to ensure the solar cells that the very top of the rotor mast are able to provide energy to the batteries, which can only survive 25 hours without recharge now Ingenuity has been separated from the rover.

It had been hoped that the first in a sequence of five planned flight tests would commence on Thursday, April 8th. However, this has now been delayed until Sunday, April 11th, at the earliest.

A further view of Ingenuity sitting in Jezero Crater after the rover has moved further away. Sol 43 (April 4th, 2021)

The delay is to allow for a full regime of tests to be carried out on the helicopter – which has gained the nickname “Ginny”  among the engineering and flight team at JPL – including its ability to survive the harsh cold of Martian nights and then recharge its batteries during daylight hours. Should all go according to plan, Perseverance will capture the flight, and images / video from both the rover and the helicopter will be released on or shortly after April 12th.

Providing the first straight-up-hover-straight-down flight is a success, the flight team will move on to the remaining four pre-flights for the helicopter, which the hope to complete well inside the 30-day window allowed for the tests – and potentially complete more, if there is sufficient time left before Perseverance must turn to its now duties and say “bye-bye” to  Ingenuity.

Following the first flight, Ingenuity will perform a more complex series of flights, such as the one shown above. Credit: NASA/JPL

When it does commence its own science work, Perseverance may not initially travel too far from the helicopter’s flight zone: whilst Ingenuity was unfolding beneath it, the rover’s team became increasingly intrigued by a green-tinted rock a short distance away.

The yet-to-be-dubbed rock is thought to be a possible meteorite or a piece of bedrock that may have been “popped” up from under the layers of sedimentary rock on which the rover is parked. However, the science team will not be drawn on any conclusions until Perseverance has had the chance to get up close to the rock and focus all of its attention on it. Thus far, the rover has only been able to image the rock using its Mastcam-Z system and zap it a few times with the SuperCam laser system.

That the rock – roughly 15 cm in length – might be a meteorite is not beyond the bounds of possibility: Perseverance’s “sister” rover, Curiosity, happened upon a similar odd rock sitting on the landscape in 2014. Once its duties watching over Ingenuity have ended, Perseverance will be able to devote its full attention on the rock, further utilising its SuperCam laser and spectrometer, as well as the SHERLOC and WATSON combination on its robot arm in an attempt to decipher the rock’s mystery.

The interesting rock – possibly a meteorite – Perseverance has been studying from a distance whilst the Ingenuity helicopter deployment has been underway. Credit: NASA/JPL

Meanwhile, and half a world away, Curiosity has been busy as it continues its investigations of  “Mount Sharp”, the 6 km high mound of deposits left in the centre of Gale Crater, the result of multiple periods of flooding.

At the start of March, Curiosity commenced it most recent science campaign, examining an impressive 6 metre high rock formation dubbed “Mont Mercou” after a mountain in France close the village of Nontron, which is being used to generate monikers for features in the area the rover is exploring due to the presence of nontronite, a type of clay mineral (also named for the village) within the area.

A 3D view of “Mont Mercou” created from a total of 32 images captured by Curiosity on Sol 3049 of its mission – March 4th, 2021. It was made by taking 16 images from one location and then moving 4 metres to take a second set. The resulting stereoscopic effect helps scientists get a better idea of the geometry of the mound’s sedimentary layers, as if they’re standing in front of the formation. This finished view has been coloured balanced to match Earth-type lighting conditions. Credit; NASA/JPL

Continue reading “Space Sunday: Ingenuity readies for flight”

Space Sunday: more from Mars and recalling a NASA legend

A CGI model of the Mars 2020 rover Perseverance on the surface of Mars. Credit; NASA

NASA’s Mars 2020 Perseverance rover has passed its first month on Mars, an event marked by the science and engineering teams continuing to check out the rover’s systems  and instruments as the rover continues its initial drive within Jezero Crater.

So far, all of this has been going exceedingly well. We’ve had no major technical issues. We’ve had no major technical issues.

– Ken Farley, Perseverance project scientist

Currently, the mission team are preparing to deploy the Ingenuity drone helicopter ahead of for a series of proof-of-concept flights. This has involved driving the rover short distances to locate a suitable area in which to deployed the helicopter, which is stored under the rover.

So a location was found during the past week, and on Sunday, March 21st, Sol 30 for the rover on Mars, the command was sent to eject the cover that projected the delicate helicopter during the rover’s arrival on Mars. The release of the cover was filmed by the WATSON imager on the rover’s robot arm, with raw colour and black and white images issued by NASA a few hours after the cover had been dropped.

Two images of captured by the WATSON imager on the Mars 2020 rover robot arm show fore-and-after views, one in black-and-white and the other in colour, of the detached protective cover for the Ingenuity helicopter droner. The helicopter can be seen stowed and attached to the rover’s belly at the top of each image. Credit: NASA/JPL

The next stage will be for the rover to move clear of the cover so the helicopter itself can be deployed, before the rover backs away even further to expose the drone to clear air. It’s not clear when this deployment will take place, but NASA will be holding a special briefing on Tuesday, March 23rd at 17:30 UTC at which members of the helicopter and rover team will discuss progress with the mission and what will be involved in the helicopter deployed and flight operations  commence. The briefing will by available on NASA TV and YouTube, with questions being accepted via social media using #MarsHelicopter.

The first flight won’t be made any earlier than the first week of April, but it will be filmed by the rover using its high-resolution Mastcam-Z systems, and an attempt will be made to record the sound of the drone flying. In all, five flights of the helicopter are anticipated, after which Perseverance will commence its own science mission.

As things stand, this will be a two-phase mission, the first being an exploration of the inflow delta created by the water that once flowed into the crater to form a lake. In particular, the rover will be looking for evidence of past life in the sediments and rocks. Along the way, it sell select a spot to deposit up to 10 samples it has gathered during its studies, which my be collected by a future sample-return mission.

The second phase will see Perseverance may its way out of the crater to examine the crater rim and the plains beyond. Here again, it will select a location to deposit up to 28 samples that may be gathered by a future sample-return mission.In all, both phases of the mission – which will be subject to change depending on discoveries made along the way – are expected to take around 7 years to complete and will see the rover cover some 35 km.

In the meantime, the rover’s microphones have been busy; as I reported in  my last Space Sunday, one has recorded the sound of the Martian wind. More recently, NASA has released a recording on the rover’s EDL (Entry, Descent. Landing) microphone capture of sounds of the rover driving on Mars.

Those expecting some high-tech sound of purring electrical motors and so on as depicted in sci-fi films are liable to be disappointed by the strange mix of bangs,clunks and thuds recorded as the rover’s aluminium wheels and its spring suspension deal with the uneven terrain. Two recordings were released, one at 16 minutes in length, and a 90-second “cleaned up” recording, that is embedded below.

If I heard these sounds driving my car, I’d pull over and call for a tow. But if you take a minute to consider what you’re hearing and where it was recorded, it makes perfect sense.

– Dave Gruel, lead engineer for Mars 2020’s EDL Camera and Microphone subsystem.

One of the reasons the sounds seem to be odd is because the EDL microphone isn’t designed to record the the sound of the mobility system directly, rather it is picking the sounds up through the body of the rover.

Glynn Lunney

Glynn Stephen Lunney may not be a name familiar to many interested in human space flight, but he was one of the legends of NASA, and who sadly passed away at the age of 84 on March 19th, 2021.

Born in November 1936 in the coal city of Old Forge, Pennsylvania, Lunney was encouraged by his parents to seek a career away from the mines. An early interest in flight and model aeroplanes led him to engineering in college, form where he enrolled at the Lewis Research Centre in Cleveland, Ohio, to study aerospace engineering, the centre at that time forming part of the US  National Advisory Committee for Aeronautics.

Graduating in 1958 with a Bachelor of Science degree, Lunney remained with the NACA as a researcher in aerospace dynamics at Lewis. He was thus one of NASA’s very first employees when on July 29th, 1958 President Eisenhower signed it into existence, subsuming the NACA into it in the process.

Lunney’s prowess in the fledgling field of space flight was immediately recognised, and he was transferred to Langley Research Centre, Virginia, where in September 1959, and aged just 21, he became the youngest member of the Space Task Group, the body given responsibility for the creation of NASA’s human space flight programme.

Glynn Lunney “in the trenches” (as the rows of consoles at mission control were called at the time) of the mission simulation centre, 1966. Credit: NASA
As a member of the Flight Operations Division, Lunney was one of the engineers responsible for planning and creating procedures for Project Mercury, America’s first manned space programme. Here he was a major part of the team that wrote the first set of mission rules by which both flight controllers and astronauts operated, and he also became the second man to serve as the Flight Dynamics Officer (FIDO), responsible for controlling the trajectory of the Mercury spacecraft and planning adjustments to it.

Such was Lunney’s quiet assurance, professionalism and engineering skill, he was one of three men selected by Christopher C. Kraft, the hands-on head of mission operations, to join him in becoming the first generation of Flight Directors responsible for managing all of NASA’s space flights, the other two being John Hodge and the legendary Gene Kranz. Together, these for men did much to establish the protocol  and procedures required for human space flight at that time, and they also oversaw the design and implementation of the first two Mission Operations Control Rooms which were to become famous as “mission control” in the Apollo era.

Lunney (seated, foreground) walking his team through the process of transferring guidance and navigation data from the Apollo 13 command module to the lunar module,  1970. Credit: NASA

Although only 29 when selected by Kraft, Lunney was, in addition to his responsibilities as a Flight Director, charged with overseeing the testing of core elements of Apollo flight hardware, including the launch escape system, and the first uncrewed flight test of the the Saturn V launch vehicle.

Lunney was particularly respected for his ability to absorb and retain information, running through scenarios and options much faster than any of his colleagues. This was especially important in the wake of the Apollo 13 explosion in  1970, with the vehicle en-route to the Moon.

While Genz Kranz and his White flight team tend to get all of the credit for successfully guiding the astronauts through the crisis and getting them back to Earth, it was actually Lunney who orchestrated the entire process of powering-up the lunar module, transferring the flight guidance and navigation data to its computer and  getting the Apollo 13 crew and critical equipment into the module within a very short time frame, whilst also leaving the command module in a condition whereby it could hopefully be powered up later. In doing so, he largely steered his team by using his own innate knowledge of systems aboard both craft.

Continue reading “Space Sunday: more from Mars and recalling a NASA legend”

Space Sunday: Perseverance, SN10, and a little bit more

Part of a 360º panorama of Jezero Crater stitched together from 79 individual images captured by the high-resolution Mastcam-Z right-eye 110-mm zoom camera, captured on the afternoon of Sol 4 (Feb. 22nd, 2021). Credit: NASA/JPL

NASA is continuing to get the Mars 2020 rover Perseverance ready to commence science operations, with the past week has seen a number of milestones achieved – including the rover’s first drive on the surface of Mars.

Immediately following the post-landing check-outs, mission controllers were focused on swapping out the Entry Descent and Landing (EDL) software on the rover for the software that will be central to its surface operations. This work was completed on Friday, February 26th – Sol 8 on Mars for the rover. This paved the way for this week’s check-outs of systems.

On Sunday, February 28th, commands were sent to deploy the Mars Environmental Dynamics Analyser (MEDA). Located on the rover’s mast, this comprises two extensible booms and forms the rover’s “weather station”, a set of sensors that measure temperature, wind speed and direction, pressure, relative humidity, radiation, and dust particle size and shape, provided by Spain’s Centro de Astrobiología.

Created from a series of NavCam images recorded on February 28th, this .GIF reveals the deployment of one of the Mars Environmental Dynamics Analyser (MEDA) booms on Perseverance Mars rover. Credit: NASA/JPL

Following this, on Tuesday, March 12th (Sol 12 for the rover), the robot arm was put through its initial paces.

As with Curiosity, the robot arm on Perseverance forms a key part of its science and physical capabilities. At over two metres in length, it has 5 degrees freedom of movement, and ends with a 45 kg “turret” that carries numerous tools and instruments, including:

For its first use, the arm was extended from its cradle and raised to the vertical before being “wriggled” back and forth to confirm instrument stability. It was then lowered and put through a set of rotational moves (as was the instrument turret), before being returned to its cradle and the turret again rotated in two directions.

Images of the rover’s robot arm being put through a basic set of movements. The white “box” on the turret is the PIXL spectrometer, To the right of that is the sample / drill system and on the far side of the turret relative to PIXL is the SHERLOC / WATSON combination. Credit: NASA/JPL
Tuesday’s first test of the robotic arm was a big moment for us. That’s the main tool the science team will use to do close-up examination of the geologic features of Jezero Crater, and then we’ll drill and sample the ones they find the most interesting. When we got confirmation of the robotic arm flexing its muscles, including images of it working beautifully after its long trip to Mars – well, it made my day.

– Robert Hogg, Mars 2020 rover deputy mission manager

A further significant milestone was marked on March 4th (Sol 14), when the rover made that first drive. While covering less then eight metres, it was enough for the rover to perform a few basic manoeuvres intended to allow the engineering team to check-out the rover’s basic mobility capabilities.

Perseverance wiggles one of its wheels in this set of images obtained by the rover’s left Navigation Camera on March 4th, 2021. Credits: NASA/JPL

Following a set of initial steering turns of the forward wheels (shown above), the rover drove forward 4 metres before turning 150o whilst standing still. It then reversed a further 2.5 metres to park in a new location. While comparatively short and taking 33 minutes to complete, this first drive is a small taste of what is to come. With its improved navigation and auto-pilot capabilities, Perseverance is  capable of covering up to 200 metres in a single day once surface operations commence.

This was our first chance to ‘kick the tires’ and take Perseverance out for a spin. The rover’s six-wheel drive responded superbly. We are now confident our drive system is good to go, capable of taking us wherever the science leads us over the next two years.

– Anais Zarifian, Mars 2020 rover mobility test bed engineer

This set of images shows parts of the robotic arm on NASA’s Perseverance rover flexing and turning during its first checkout after landing on Mars. These images were taken by the rover’s NavCam systems on March 3rd, 2021. Credits: NASA/JPL

The new parking position gave the mission team an opportunity to look back at the rover’s landing point and examine the surface and how the skycrane motors dispersed dust and regolith. The view also gave the mission team the opportunity to formally name the landing site, as has been done with past missions.

Using a press conference on the rover’s  progress held on Friday, March 5th, members of the Mars 2020 mission team announced the landing site will be known as the “Octavia E. Butler Landing”, named in honour of the African-American science fiction writer, who passed away in 2006.

Whilst not officially recognised by the International Astronomical Union, the body responsible for all official solar system designations, the name reflects the Jet Propulsion Laboratory’s practice of naming key sites for missions after noted scientists and science fiction writers (for example, the Curiosity rover landing site was dubbed “Bradbury Landing” after science fiction author Ray Bradbury, while the mountain it is exploring was dubbed “Mount Sharp” after American geologist Robert P. Sharp).

Depending on how reporting on the initial phases of the rover’s mission is handled by NASA, I’ll continue to update on Perseverance alongside other Mars missions either as a part of Space Sunday, or within a new series I’m debating running. In the meantime, the video below combines views of Jezero Crater captured by the rover’s Mastcam and NavCam systems during the rover’s first week of operations.

Continue reading “Space Sunday: Perseverance, SN10, and a little bit more”

Space Sunday: Mars, starships, rockets and spaceplanes

A panorama of Jezero crater captured by the Mastcam-Z system on Perseverance showing the stern deck of the rover with the crater rim on the far horizon. It comprises 142 individual images taken on Sol 3, the third Martian day of the mission (Feb. 21st, 2021). Credit: NASA/JPL / ASU / MSSS

NASA’s latest rover arrived on Mars on February 18th, 2021 as the core part of the agency’s Mars 2020 mission, the rover Perseverance, arrived on the red planet (see:  Space Sunday: ‘Perseverance will get you anywhere’ and  Space update: 2020 landing video and audio of the Martian wind).  Since then, work has been continuing in commissioning the rover ready to start its science operations, and it has continued to return images of its new home in Jezero Crater. And as has now been widely reported, it gave Internet sleuths a coded message to decode.

This came in the form of the red and white markings on the mission’s supersonic parachute. Intended to provide data on how the parachute unfurled and performed, it also contained a message in binary code – something hinted at by Allen Chen, the Entry, Descent and Landing lead for the mission whist referencing the parachute’s performance during the February 22nd press briefing I reported on in the second of the two articles noted above.

In addition to enabling incredible science, we hope our efforts in our engineering can inspire others.  Sometimes we leave messages in our work for others to find for that purpose, so we invite you all to give it a shot and show your work.

– Allen Chen, the Mars 2020 EDL lead, February 22nd

With the parachute lines edited out, a graphic overlaid onto the Mars 2020 parachute reveals the hidden message (read counter-clockwise from the centre outwards). Credit: NASA

The message, in binary code, was cracked in six hours, proving to the saying Dare Mighty Things, a phrase attributed to Theodore Roosevelt, the 26th President of the United States and the adopted motto of the Jet Propulsion Laboratory, responsible for the mission, together with the latitude and longitude of JPL’s offices in Pasadena, California.

Nor is the only coded message the rover carries. While its wheels are of  an improved design over those used on the Curiosity rover – which celebrated 3,000 days of continuous operations on Mars on January 12th, 2021 – the wheels on Perseverance also carry the letters “JPL” cut into their treads in Morse code.

Other curios carried by the rover include a “family portrait” of NASA rover types that run from tiny Sojourner, which arrived on Mars in 1998 as a part of the Mars Pathfinder mission, through the twins of Spirit and Opportunity Mars Exploration Rover mission, to Curiosity and Perseverance. Like a plaque to healthcare workers around the globe, this is something of a decorative / commemorative piece.

Captured by the NavCam system, the “family portrait”. of NASA rovers from Sojourner to Perseverance. Credit: NASA/JPL / MSSS

Another of the commemorative piece son the rover is a panel on which are mounted the three microchips that contain the names of the 10,932,295 people who applied to have their name included in the mission (you can also apply to have your name included in future missions), which located on the rover’s aft cross-beam, above its nuclear power supply.

Some of the curios also fulfil a practical use. For example, the SHERLOC ultraviolet Raman spectrometer mounted on the rover’s robot arm includes five samples of materials that may be used in future spacesuits that may be used on Mars.

A cropped view of the panorama seen at the top of this article showing the location of the name-carrying microchips on Perseverance (l). On the right, the microchips shortly after being maounted on the rover’s aft cross-beam. Credit: NASA/JPL

The intent of these samples is to test how the materials in them react to the Martian environment; however one of them – made of the materials used in helmet visors contains behind it a geocache inscribed with the address of the instrument’s fictional name-sake (221B Baker Street).

Mounted on the deck of the rover is a camera calibration target. Located between the colour and reflective marks on the outer ring of the calibration target are a series of symbols representing life on Earth which is intended to reflect the mission’s primary goal of looking for evidence of past life on Mars, whilst the Mastcam-Z system on the rover includes the massage:

Are we alone? We came here to look for signs of life, and to collect samples of Mars for study on Earth. To those who follow, we wish a safe journey and the joy of discovery.

– from the Perseverance rover

The sample panel on the SHERLOC instrument includes 5 samples of spacesuit materials including, left, visor material with a geocache behind it bearing the legendary address of Sherlock Holmes. Credit: NASA/JPL

Since its arrival at Jezero Crater, Perseverance has returned thousands of images of its surroundings,   commissioning and testing continues. It’ll still be another couple of weeks or so before the surface mission properly commences. These have revealed that in coming down roughly 2km from the mid-point of its landing area – a remarkable achievement in itself -the rover has found itself in a rich geological playground, including features formed by both the passage of water and wind.

Some, such as “Seal Harbour Rock” – most likely formed by the passage of wind – already has geologist excited.

Are these volcanic rocks? Are these carbonate rocks? Are these something else? Do they have coatings on them? We don’t know  – yet. We don’t have any chemical data or mineral data on them; but, boy, they’re certainly interesting, and part of the story about what’s going on here is going to be told when we get more detailed information on these rocks and some of the other materials in this area.

– Jim Bell, School of Earth and Space Exploration, Arizona State University

A broader version of the panorama over the back of the perseverance rover, with the position of “Seal Harbour Rock”, likely the result of wind erosion, marked and the rock itself highlighted in the inset image. Credit: NASA/JPL

China Starts Preparations for Rover Landing

Having arrived in Mars orbit the week before Mars 2020 made its Martian debut, China’s Tianwen-1 mission as entered a temporary parking orbit around Mars in anticipation of landing a rover on the planet’s surface in the coming months.

Comprising an orbiter vehicle, a lander and the rover, Tianwen-1 is China’s first interplanetary mission, Tianwen-1 will remain in its new circular orbit for around 3 months. During this time the orbiter, alongside of its main science programme, will collect high-resolution images of the surface of Mars, notably of the proposed landing site for the lander/rover combination.

Released in October 2020, this image captured from a camera mounted off the end of the orbiter’s solar panels shows the gold-colour orbiter an the land / rover contained within their protective aeroshell. Credit: China National Space Administration

The landing itself will follow a similar profile to those of NASA’s Pathfinder and MER missions: after entry into the atmosphere, the lander/rover will be slowed by parachute, with the final part of the decent using rocket motors to reduce speed before airbags are inflated to protect the vehicles through landing.

If successful, the lander will deploy the solar-powered rover, which will collect data on underground water and look for evidence that the planet may have once harboured microscopic life.

Continue reading “Space Sunday: Mars, starships, rockets and spaceplanes”

Space update: 2020 landing video and audio of the Martian wind

A CGI model of the Mars 2020 rover Perseverance on the surface of Mars. Credit; NASA/JPL

On Thursday, February 18th, NASA’s Mars 2020 mission delivered the rover Perseverance, carrying the helicopter drone Ingenuity, safely to the surface of Jezero Crater, Mars (see: Space Sunday: ‘Perseverance will get you anywhere’). Sine then, the rover has been going through its initial checks, and on Monday, February 22nd, members of the mission team gave the latest update on the rover’s status, which included a unique video and an audio recording.

The video was made up of images recorded by a suite of cameras specifically mounted on the rover and its landing systems specifically with the aim of recording the landing event in as much detail as possible. These cameras comprised:

  • A pair of camera on the top of the aeroshell that protected the rover and its “skycrane” descent stage through entry into, and initially deceleration and flight through, the upper atmosphere of Mars. These were intended to capture video of the supersonic parachute deployment.
  • A single camera attached to the skycrane that looked down on to the stowed rover, designed to record the process of winching it down in its harness and then delivering it to the ground.
  • A camera up the upper deck of the rover looking up at the skycrane to record the same, and the skycrane’s departure from the landing site.
  • A camera on the side of the rover and looking down, intended to record the vehicle’s descent via parachute and its approach for landing.
The Mars 2020 EDL cameras. Credit: NASA/JPL

With the exception of one of the aeroshell cameras, which appears to have failed when the explosive “mortar” fired the parachute package clear of the aeroshell, all of these camera captured some incredible footage of the landing sequence.

Once retuned to Earth, the footage was poured over by the mission’s imaging team at the Jet Propulsion Laboratory (JPL), with elements combined with audio recorded at JPL’s mission control during the landing, to produce an incredible short film, that puts the audience right there with the rover as it landed on Mars, as you can see below.

The first part of the film showed the deployment of the parachute system. This comprised firing the 67 Kg parachute pack out of the top of the aeroshell at 150 km/h, detaching a protective cover from the aeroshell (parts of which broke off) in the process.

The aeroshell cameras capture the deployment and unfurling of Mar 2020’s supersonic parachute. Credit; NASA/JPL

The package pulled the parachute harness out behind it until it reached its full extent (about 46 metres), which caused the 21.5m diameter parachute to deploy at a time when the vehicle was still travelling at around Mach 1.75. In all, this process took around 1.5 seconds to complete.

At this point the the rover down-look camera started recording, capturing the jettisoning of the heat shield that formed the lower part of the aeroshell. This demonstrated its aerodynamic nature by falling away without tumbling, leaving the rover’s look-down camera to film the inflow delta to one side of the crater  – and the intended landing point –  as the rover and aeroshell swayed under the parachute.

The heat shield is jettisoned and falls away with great stability. Credit: NASA/JPL
Not long after this, the rover and its skycrane descent stage dropped clear of the aeroshell, the view of the ground shifting dramatically as the descent stage used its motors to  propel itself away from the areoshell to avoid any risk of collision before gently veering back to centre itself over the landing zone.

This footage – still via the rover’s down-look camera – then captures the thrust from the rocket motors as the skycrane comes to a hover some 20 metres above the ground, then there is a sharp jerk as the rover is released to be lowered to the ground by the skycrane and its harness.

As the rover is released by the descent stage, so the remaining camera systems come into play, one looking down from the skycrane as the rovers is lowered, and the other on the rover looking up as it leaves the skycrane as it hovers steadily over the landing zone.

The skycrane and the rover capture the latter’s deployment just before touch-down from opposite ends of the harness. Credit: NASA/JPL

It was also this up-look camera that caught the last images of the skycrane as, with the rover on the ground, the harness cables and data umbilical detached, it re-oriented itself to fly away to crash some 700m from the rover.

As well as cameras to record the images of the landing, it had been hoped that one of the rover’s two microphones would record the sounds of the descent and landing. Unfortunately, it failed to do so, but over the weekend, it did capture the sigh of a gust of wind passing over the rover at about 5 metres/second, giving us our first direct recording of the Martian wind.

Since landing, various checks have been performed on the vehicle, and instrument packs deployed. The most important of these has been the RSM – the Remote Sensing Mast. This houses a range of instruments, including the SuperCam, the Mastcam-Z high-resolution camera and the rover’s main navigation cameras (NavCams). The latter are, like their cousins on Curiosity’s RSM, designed to assist with rover driving and navigation. However, they are far more capable and much higher resolution, each one capable of take up to a 20 megapixel image.

For their initial testing, there were operated at one-quarter of this capacity, taking a series of images around the rover, which were shown at the February 22nd press conference without any colour processing or white-balancing, so they showed Mars exactly as it were appear to a human standing there.

Two relatively low resolution images taken by the NavCams on Perseverance during initial check out. They show the rover and its surroundings in natural colour and lighting. Credit: NASA/JPL

Over the next few days, the remaining systems on the RSM will be tested, and the rover will also go into a data download mode.

Since launch, the on-board computers have been configured with software required to keep the rover safe during Mars transit and to allow it to play its part in the EDL phase of the mission.  As this programming is no longer required, mission control will transmit the initial data sets required for the rover and its systems to go through their commissioning procedures – which are liable to take a few weeks – and prepared it for its initial science mission software. During this week, further tests will also be carried out, including allowing the rover to complete a short drive.

I’ll have more on all of these actives in future Space Sunday updates, but for now, why not scroll back up and what that video again?