
SpaceX has had a busy week. Following the loss of the Starship prototype SN4, the company has been pushing ahead with the construction of prototypes SN5 and SN6 – one of which is likely to complete the first flight tests for the vehicle.
These prototypes look a little odd to some, resembling little more than steel cylinders. This is because SpaceX is currently focused purely on the vertical ascent / decent capabilities of the vehicle, and for this they only need the section of the hull that contains the fuel tanks and the raptor motors. Experience in flying the smaller Starhopper vehicle demonstrated there is no need to include the vehicle’s upper sections or the dynamic flight surfaces – although these will be added as the test flights become more ambitious and broader in scope.

Also following the destruction of the SN4 prototype, the company started work on the SN7 vehicle. This caused some speculation as to where it might fit in the test vehicle series. Might it be the start of a prototype that does go on to include the said upper sections and flight surfaces? Was it being built in case SN5 or SN6 went the way of SN4 and SN3?
As it turned out, SN7 was constructed specifically for further tests on tank pressurisation. On June 15th, 2020 the tank, mounted on a test stand was filled with liquid nitrogen (used in testing because it mimics the super-cold temperatures of the propellants the tanks will eventually contain, and so exposes the tank to the same temperature stresses, but if the tank ruptures, it will not explode) to its maximum pressure. It resulted in a slight leak developing, which was repaired. Then, on June 23rd, the tank was once more filled with liquid nitrogen – but this time to a pressure well beyond it would have to face when in use during a launch.

The results were spectacular: an initial rupture occurs in the lower half of the tank, instantly expand into a tear along its base seam that released the liquid nitrogen in such bulk and pressure that it instantly vaporised en masse, venting with a force that lifted tank and test stand sideways off the ground. Immediately after the incident, SpaceX deployed their newest team member, Zeus.
A robot “dog” developed by Boston Dynamics (which they generically call “Spot”), Zeus is being used by SpaceX to assess potentially hazardous situations around the Boca Chica test site – in this case, the ground conditions following exposure to so much liquid nitrogen that took time to completely boil off. In typical SpaceX humour, the company has even erected a large Snoopy-style dog house on the grounds that’s allegedly the robot dog’s home.

One of the reasons for taking the test beyond limits was to check the steel used in SN7’s construction. Earlier versions of the Starship prototypes had been built with 301 stainless steel, but the company has opted to switch to the stronger 304L, and the degree to which the tank stood up to the test is being seen as indicative that the 304L is structurally a better choice.
Also during the week, NASA announced that the Crew Dragon currently docked with the International Space Station will likely return to Earth at the start of August 2020, with its crew of Robert Behnken and Douglas Hurley. Its return will pave the way for the first “operational” crew Dragon launch, which will carry astronauts Michael Hopkins, Victor Glover, Shannon Walker (commander) and Soichi Noguchi to the ISS at the end of August or early September.

In a separate announcement, the agency further indicated that in a change to their requirements, they will in future allow SpaceX to make use of re-used Falcon 9 first stages in Crew Dragon launches. Previously, the agency had specified that each crewed mission must take place using a new Crew Dragon and new Falcon 9 launcher. The change came after a second Falcon 9 first stage successfully completed its fifth launch and landing.
Continue reading “Space Sunday: SpaceX and a rapid round-up”






















