2017 Viewer release summaries week 29

Logos representative only and should not be seen as an endorsement / preference / recommendation

Updates for the week ending Sunday, July 23rd

This summary is published every Monday, and is a list of SL viewer / client releases (official and TPV) made during the previous week. When reading it, please note:

  • It is based on my Current Viewer Releases Page, a list of all Second Life viewers and clients that are in popular use (and of which I am aware), and which are recognised as adhering to the TPV Policy. This page includes comprehensive links to download pages, blog notes, release notes, etc., as well as links to any / all reviews of specific viewers / clients made within this blog
  • By its nature, this summary presented here will always be in arrears, please refer to the Current Viewer Release Page for more up-to-date information.

Official LL Viewers

LL Viewer Resources

Third-party Viewers

V5-style

  • No updates.

V1-style

  • No updates.

Mobile / Other Clients

  • No updates.

Additional TPV Resources

Related Links

Advertisements

Sansar: profile 4 and thoughts on a wider reach

Sansar from Linden Lab

The fourth Sansar preview video arrived on Wednesday, July 19th, and is the shortest to date. Focusing on SL creator Blueberry (aka Mishi), the 79 second video takes us into one of the experiences she’s developed in Sansar – Blueberry Town – and gives some further brief glimpses of the platform’s tools – notably the Atlas as seen when using a VR headset.

When viewing this video it’s important to remember that Sansar isn’t primarily intended for the Second Life audience; as such some of the statements made should be treated as such. But that said, given the fact these videos focus on “Second Life creators”, they also tend to come across as speaking directly to the existing Second Life audience, and I’m not entirely sure that’s a positive move.

If nothing else, statements that Sansar presents an environment to do things that are “not even possible anywhere else” are liable to have SL users at least hiking an eyebrow or two, if not rolling their eyes across the floor, given what is being shown in Sansar is more-or-less precisely what SL users have been doing for the last 14 years; just because it cannot offer the same depth of immersion as Sansar will actually doesn’t change this point.

Sansar’s Atlas, seen in a HMD

Some of the promotional videos released to date have already been critiqued on precisely this ground. While there have been some good insights in to Sansar – such as with the preview featuring Maxwell Graf (which I reviewed here), the repeated focus on Second Life creators like this does appear to carry with it the risk of a greater degree of negative feedback about the platform than seems necessary.

At the most basic level, statements that Sansar allows people to do things that “are not even possible anywhere else” may not only cause much eye rolling among SL users, they also run the risk of hyping Sansar well beyond what can actually be achieved within the platform at this point in time. As the Lab has tried to make known: when the doors open, this won’t be a final, finished product – it will take time for capabilities to be added and to mature. Nevertheless, there’s a risk people will see the gap between promotional hype and current capability as a negative to be repeatedly pointed out.  This negative response could be increased by Second Life users when, despite the repeated statements from the Lab that it will be some time before Sansar matches many of the capabilities taken for granted in Second Life, they are confronted by the realities of that fact.

Now, in fairness to the Lab, the lion’s share of applications to the Creator Preview have come from Second Life creators, so a focus on their work is understandable when promoting Sansar (they’re also likely to be the most amenable to being the focus of these videos). But it has also been indicated that applications have come from elsewhere. Further, the Lab has also repeatedly indicated a hope that Sansar will be adopted by those market sectors where there is a clear potential doe VR – education, design, architecture, training, simulation, healthcare. So I’m actually surprised there isn’t more of a visible push to directly engage with these sectors; particularly as some are starting to get excited by Sansar’s potential.

On July 22nd, for example, Steve Bambury, writing in his VirtualiTeach blog waxed lyrical about Sansar’s potential in education (and as an aside, it prompted one SL blogger to have the realisation Sansar isn’t “about SL users”). So putting together promotional information on how those in education could practically leverage Sansar – as well as some of the other markets the Lab has pointed at – would seem to be in order.

Of course, this might be happening under the covers, or it might be that the technical wherewithal of Sansar at this point in time causes the Lab to be wary of promising more than can be delivered when the doors open, or it might simply be that those partners from these specific market sectors don’t want their experiments in Sansar highlighted. But this doesn’t stop the Lab crafting suitable messages.

Take their collaborations in using LiDAR mappings of an Egyptian tomb to recreate the entrance of the the tomb in Sansar, and in building a model of the Villa Ortli excavation in the Crimea, or the LOOT Interactive Sansar Apollo Museum. All of these could form the bedrock for helping to visually promote Sansar’s potential through video whilst helping to reach beyond what can appear to be a Second Life audience focus.

The Sansar Apollo Museum, unveiled at Loot Interactive’s The Art of VR event in New York on June 22nd, allows visitors to virtually explore true-to-scale models of the Saturn V rocket, Command Module, and Lunar Module, then walk the entire mission from launch to re-entry via a Museum-length mission map; and teleport to a recreation of the Apollo 11 lunar landing site

It may yet come that we see these videos cast their net a little wider; I’d just like to see it happen a little sooner than later, and see more meat put on the plate of Sansar’s potential.

Space Sunday: ninja space stations, Falcons, Dragons and ET

The cislunar Deep Space Gateway with an Orion Multi-Purpose Crew Module approaching it. Credit: NASA

Lockheed Martin has announced it will build a full-scale prototype of NASA’s proposed Deep Space Gateway (DSG), a space habitat occupying cislunar space. The facility, which if built, will be both autonomous and crew-tended, and is intended to be used as a staging point for the proposed Deep Space Transport NASA is considering for missions to Mars, as well as for robotic and crewed lunar surface missions.

DSG is part of a public-private partnership involving NASA in developing technologies for carrying humans beyond low Earth orbit called Next Space Technologies for Exploration Partnerships (NextSTEP). A Phase I study for the facility has already been completed, and the full-scale prototype will be constructed as a part of the Phase II NextSTEP habitat programme, which will examine the practical issues of living and working on a facility removed from the relative proximity of low Earth orbit, outside of the relative protection of the Earth’s magnetic field and subject to delays of up to 3 seconds in two-way communications.

“It is easy to take things for granted when you are living at home, but the recently selected astronauts will face unique challenges,” said Bill Pratt, Lockheed Martin NextSTEP program manager.

“Something as simple as calling your family is completely different when you are outside of low Earth orbit. While building this habitat, we have to operate in a different mindset that’s more akin to long trips to Mars to ensure we keep them safe, healthy and productive.”

The proposed Gateway, which if built would likely enter service in 2027/2028, will be designed to make full use of the Orion Multi-Purpose Crew Module as its command and control centre, and will also use avionics and control systems designed for the likes of NASA’s MAVEN mission in order around Mars and the Juno mission at Jupiter, which will allow the facility to operate in an uncrewed automated flight mode around the Moon for up to seven months at a time.

NASA’s MPLM mission logo. Credit: NASA / Marshall Space Flight Centre

The core of the prototype will be the Donatello Multi-Purpose Logistics Module (MPLM), originally designed and built for flights aboard the space shuttle and capable of delivering up to nine metric tonnes of supplies to the International Space Station (ISS). Two of these units, Leonardo and Raffaello flew a total of 12 missions to the ISS between 2001 and 2011, with Leonardo becoming a permanent addition to the space station in early 2011. And if film and comic fans are wondering, yes, the modules were all named after a certain band of mutant ninja turtles – hence the MPLM mission logo (right).

Donatello was a more capable module than its two siblings, as it was designed to carry payloads that required continuous power from construction through to installation on the ISS. However, it was never actually flown in space, and some of its parts were cannibalised to convert Leonardo into a permanent extension to the space station. In its new role, Donatello will form the core habitat space for the DSG prototype, and will be used as a testbed for developing the living and working space in the station, which will also have its own power module and multi-purpose docking adapter / airlock unit.

The Phase II development of the DSG is expected to occur over 18 months. Mixed Reality (augmented reality and virtual reality) will be used throughout the prototyping process to reduced wastage, shorten the development time frame and allow for rapid prototyping of actual interior designs and systems. The results of the work and its associated studies will be provided to NASA to help further the understanding of the systems, standards and common interfaces needed to make living in deep space possible.

The DSG is one of two concepts NASA is considering in it attempts to send humans to Mars. The second is the so-called Deep Space Transport (DSH). This is intended to be a large vehicle using a combination of electric and chemical propulsion to carry a crew of six to Mars. It would be assembled at the Deep Space Gateway.

While having a facility in lunar orbit does make sense for supporting operations on the Moon’s surface, when it comes to human missions to Mars, the use of the DSG as an assembly  / staging post for the DST actually makes very little practical sense. Exactly the same results could be achieved from low Earth orbit and without all the added complications of lunar orbit rendezvous. The latter simply adds an unnecessary layer of complexity to Mars missions whilst providing almost no practical (or cost) benefits, and perhaps again demonstrates NASA’s inability to separate the Moon and Mars as separate destinations – something which has hindered their plans in the past.

Musk Walks Back SpaceX Aspirations

SpaceX CEO and chief designer, Elon Musk has walked back on expectations for the initial lunch of the Falcon Heavy booster and on longer-terms aspirations for the Dragon 2 crew capsule.

Musk: a successful maiden flight of the Falcon Heavy “unlikely”. Credit: Associated Press

Speaking at the International Space Station Research and Development Conference held in Washington DC in mid-July 2017, Musk indicated that a successful maiden flight of the Falcon Heavy rocket is extremely unlikely. He also indicated that the company is abandoning plans to develop propulsive landing techniques for the Dragon 2 when returning crews to Earth from the ISS – and to achieve a soft landing on Mars.

Falcon Heavy is slated to be the world’s most powerful rocket currently in operation when it enters service in 2018, capable of lifting a massive 54 tonnes to low Earth orbit – or boosting around 14 tonnes on its way to Mars. Designed to be reusable, the rocket uses three core stages of the veritable Falcon 9 rocket – one as the centre stage, two as “strap on boosters” either side of it.

But computer modelling has revealed that firing all 27 motors on the stages (nine engines apiece) at launch has dramatically increased vibrations throughout the vehicle stack, making it impossible to gauge by simulation whether or not the rocket will shake itself apart without actually flying it. Hence Musk’s statement that the maiden flight of the Falcon Heavy  – slated for later in 2017 – is unlikely to achieve a successful orbit. However, telemetry gathered during the flight – should the worse happen – will help the company more readily identify stresses and issues created by any excessive vibration, allowing them to be properly countered in future launches.

Once Falcon Heavy is fully operational, all three of the core stages are intended to return to Earth and achieve a soft landing just as they do when used as the first stage of a Falcon 9 launch vehicle, and SpaceX is also working to make the upper stage of the Falcon 9 / Falcon Heavy  recoverable as well.

Also at the conference, Musk announced SpaceX will no longer be using propulsive landings for the crewed version of their Dragon 2 space capsule, due to enter operations in 2019 ferrying crews two and from the ISS, operating alongside Boeing’s CST-100 Starliner capsule. Initial flights of the Dragon 2 were intended to see the vehicle make a “traditional” parachute descent through Earth’s atmosphere followed by an ocean splashdown – the technique currently used by the uncrewed Dragon I ISS resupply vehicle.

However, SpaceX had planned to shift Dragon 2 landings from the sea to land – using parachutes for the majority of the descent back through the atmosphere, before cutting the vehicle free and using the built-in Super Draco engines (otherwise used as the crew escape system to blast the capsule free of a Falcon launch vehicle if the latter suffers any form of pre- or post-launch failure). The engines would fire during the last few metres of decent, placing the capsule into a hover before setting it down on four landing legs.

Extensively tested in tethered “hover” flights, propulsive landings would in theory made the recovery and refurbishment of Dragon capsules for future launches a lot easier, lowering the overall operating costs for the capsule. In announcing the decision to scrap the propulsive landing approach, Musk indicated it would have unnecessarily further drawn out the vehicle’s development as SpaceX sought to satisfy NASA’s requirements for crewed vehicle operations.

The decision also affects Musk’s hope of placing a robotic mission on the surface of Mars in 2020. Under that mission, a special cargo version of Dragon 2 – called Red Dragon- would fly a NASA science payload to Mars and use supersonic propulsive landing to slow itself through the tenuous Martian atmosphere and achieve a successful soft landing. This approach was seen as ideal, because using parachutes on Mars is extremely difficult with heavy payloads – NASAs studies suggest parachute on Mars have an upper limit of payloads around 1.5-2 tonnes. A Red Dragon capsule is liable to mass around 8-10 tonnes.

SpaceX have dropped plans to use propulsive landings on both their crewed Dragon 2 vehicles returning from the ISS and on their Red Dragon automated Mars lander (above). Credit: SpaceX

However, Musk no longer believes the use of a propulsive landing mechanism is “optimal” for Red Dragon, and the company has a better way of realising their goal – although he declined to indicate what this might be. Instead, propulsive landing systems would seem to be something the company will return to in the future – particularly given their hopes of placing vehicles massing as much as 100 tonnes on the surface of Mars.

No, ET Isn’t Calling Us

The Internet was agog recently after it was announced some very “peculiar signals” had been noticed coming from Ross 128, a red dwarf star just 11 light-years away. While not known to have any planets in orbit around it, and despite the best attempts of astronomers – including the team picking up the signals at the Arecibo radio telescope, Puerto Rico – news of the signals led to widespread speculation that “alien signals” had been picked up.

The usual signals – officially dubbed the “Weird!” signal, due to the comment made in highlighting the signals in an image – were first picked up on May 12th/13th, 2017. However, it was not until two weeks later that the signals were identified and analysed, the PHL team concluding that they were not “local” radio frequency interference, but were in fact odd signals coming from the direction of Ross 128 – sparking the claims of alien signals, even though the director at PHL and the survey team leader -Abel Mendez – was one of the first to pour water on the heat of the speculation. “In case you are wondering, he stated in response to the rumours, “the recurrent aliens hypothesis is at the bottom of many other better explanations.”

The Weird! signal. Credit: UPR Aricebo

Without drawing any conclusions on what might be behind the signals, PHL liaised with  astronomers from the Search for Extra-Terrestrial Intelligence (SETI) Institute to conduct a follow-up study of the star. This was performed on Sunday, July 16th, using SETI’s Allen Telescope Array and the National Radio Astronomy Observatory‘s (NRAO) Green Bank Telescope. The fact that SETI was involved probably also helped fan the flames of “alien signal” theories. However, initial analysis of the signal and the portion of the sky where it was observed have suggested a far more mundane explanation:  geostationary satellites.

“The best explanation is that the signals are transmissions from one or more geostationary satellites,”  Mendez stated in an announcement issued on July 21st. “This explains why the signals were within the satellite’s frequencies and only appeared and persisted in Ross 128; the star is close to the celestial equator, where many geostationary satellites are placed.”

While certain this explanation is correct, Mendez does note it doesn’t account for the strong dispersion-like features of the signals (diagonal lines in the figure). His theory for this is that it is possible multiple reflections caused the distortions, but the astronomers will need more time to evaluate this idea and other possibilities.

So sorry, no ETs calling out into the night – yet.