
On January 29th, 2020, the latest mission to study planets beyond our own solar system opened its eye to take a first look, in what is the start of a 3.5-year-mission to examine stars with known exoplanets.
The CHaracterising ExOPlanets Satellite (CHEOPS) a joint European / Swiss mission, was launched on December 18th, 2019 by a Soyuz-Fregat from Guiana Space Centre in Kourou, French Guiana, together with a number of other payloads. It forms the first of ESA’s new S-Class (Small Class) missions, capped at a maximum budget of €50 million apiece. It’s a small mission not just in terms of cost, but also in its physical size: CHEOPS measures just 1.5 metres on a side. Following launch, it entered a 700 km Sun-synchronous polar orbit.

Once there, initial testing of the satellite commenced. These first confirmed that communications between it and mission control were all working correctly. Once these had been thoroughly tested, the command was sent to boot-up the primary computer system so it could be run through a series of diagnostics before the primary science components were initialised. These tests also included the vehicle’s temperature control systems and the primary elements of the main telescope system – a 30 cm optical Ritchey–Chrétien telescope.

These initial commissioning tests culminated in the opening of the telescope’s primary baffle – otherwise known as its lens cap. This was the most critical aspect of the initial commissioning – if the the baffle failed to hinge open, the telescope would be unable to observe its target stars.
Fortunately, the opening went as planned, allowing the final set of tests to commence. Over the next couple of months, these will see CHEOPS take hundreds of images of stars – some with exoplanets, some without, in order to examine the measurement accuracy of the telescope systems under different conditions, and confirm its operating envelope. At the same time, this period of testing will also allow this mission team to further integrate all aspects of ground operations. Again, if all goes according to plan, some of this first light images will be released by the CHEOPS science team, and the end of the tests will see the telescope commence its primary operations.
While thousands of exoplanets have been discovered, few of them have been accurately characterised in terms of both mass and diameter. This limits our ability to fully assess their bulk density, which is needed to provide clues to there composition and their possible formation history.So to help us gain better data, CHEOPS will accurately measure the size of known transiting exoplanets orbiting bright and nearby stars. These are planets that cause dips in the brightness of their parent stars as they pass between the star and Earth.
By targeting known systems, we know exactly where to look in the sky and when in order to capture exoplanet transits very efficiently. This makes it possible for CHEOPS to return to each star on multiple occasions around the time of transit and record numerous transits, thus increasing the precision of our measurements and enabling us to perform a first-step characterisation of small planets.
– Willy Benz, CHEOPS principal investigator
The transit method offer a “direct” means of detecting exoplanets, but it is not the only option open to us. A second method, generally referred to as the radial velocity method, or Doppler spectroscopy, can detect planets “indirectly”, by directing the doppler shifted “wobble” in a star’s motion. Around 30% of all exoplanets have been detected by this method, but it can be somewhat less informative than the transit method. This being the case, another aspect of the telescope’s mission will be looking at stars where orbiting planets have been detected via the radial velocity method in an attempt to detect the planets by the more direct transit method and again, by repeated observations, allow scientists to start to characterised them.
As a whole, CHEOPS will be particularly focused on exoplanets characterised as “super-Earths” – those thought to be between Earth and Neptune in size, many of which may well be solid in nature. While it will be able to characterise these exoplanets with a new level of precision, its work will pave the ways for follow-up observations in the future by telescopes like the James Webb Space Telescope (JWST – operating in the infra-red), and by large ground-based telescopes like the 40m Extremely Large Telescope currently under construction, allowing them to both refine the CHEOPS data and add to it.
Continue reading “Space Sunday: telescopes, lunar plans and Voyager 2”



















