Space Sunday: Apollo 14, 50 years on

Panorama of the Apollo 14 landing site taken in 1971. Credit; NASA

Fifty years ago today, January 31st, 2021, America’s Apollo lunar missions resumed – and came perilously close to a second aborted mission.

Originally scheduled to take place in July 1970, Apollo 14 was delayed following the Apollo 13 crisis (see: Space Sunday: Apollo 13, 50 years on), to both allow time for recommendations resulting from the investigations into the Apollo 13 mishap to be implemented. This not only led to a hiatus in lunar landings, it also meant that the Apollo 14 crew of Mercury 7 veteran Alan B. Shepard Jr. (Commander),  Stuart A. Roosa (Command Module Pilot) and Edgar D. Mitchell (Lunar Module Pilot) eventually spent more time training together than any other Apollo crew to that point: a total of 19 months.

In the immediate aftermath of Apollo 13, NASA Administrator Thomas O. Paine indicated the agency would ideally like to launch the mission before the end of 1970; however, the recommendations for changes to be made to the Command and Service Module (CSM) combination meant that the earliest the agency could realistically schedule a launch for the mission was at the end of January 1971 – with much of the work in supervising the necessary changes being loaded directly onto the shoulders of Shepherd and Roosa.

We realised that if our mission failed—if we had to turn back—that was probably the end of the Apollo program. There was no way NASA could stand two failures in a row. We figured there was a heavy mantle on our shoulders to make sure we got it right

– Edgar D. Mitchell, discussing Apollo 14 preparations, speaking in 2011

A  further complication for the mission was that following Apollo 13, the original landing site for the Apollo 14 crew at Littrow crater, in Mare Serenitatis was abandoned in favour of sending the mission to Fra Mauro, the intended landing site for Apollo 13, and which was seen as having greater scientific relevance, requiring Shepherd and Mitchell to revisit their lunar surface and geology training – Littrow had required a high degree of training in volcanic geology; Fra Mauro was an impact crater site.

Official Apollo 14 crew photo: Stuart Roosa, Alan Shepard (centre) and Edgar Mitchell. Credit: NASA

The key changes to the CSM combination were around the oxygen tanks that had exploded on Apollo 13. These includes a complete redesign of the tanks and the circuitry within them, while a third tank was add on the opposite side of the SM that could act as a back-up in case of issues with the first two. Other changes included incorporating a 5 US gallon tank of “emergency” drinking water and an additional battery to help maintain electrical power to the Command Module in event of the main power buses failing. Alterations were also made to the connections between the Command and Lunar modules for easier and faster transfer of power and control between the two.

Outside of the need to overhaul the CSM combination in the wake of Apollo 13, the Lunar Module for the mission – the last of the “short term” H-class missions – underwent changes that included anti-slosh baffles in the descent engine fuel tanks intended to prevent incorrect low fuel warnings to be triggered – an issue that plagued both Apollo 11 and Apollo 12 – and the installation of additional equipment hard-points for the surface science mission, which would be the most intensive yet for an Apollo lunar mission.

Aside from these changes, the mission was to be the first to fly an altered Saturn V rocket. Whilst ostensibly the same externally as all the previous Saturn Vs that had flown, SA-509 had a series of internal changes made to its fuel system to prevent pogo oscillations – a self-excited vibration in liquid-propellant rocket engines caused by combustion instability that can, if unchecked, result in an engine exploding. On Apollo 13, such oscillations had meant the centre J2 engine of the rocket’s upper stage had to be prematurely shut down.

Saturn V SA-509, topped by the Apollo 14 spacecraft, rolls out from the Vertical Assembly Building (now the Vehicle Assembly Building) on its way to launch pad 39-A. Credit: NASA

Of the crew, Shepard was the only one to have previously flown in space as the first American to complete a sub-orbital hop aboard Mercury Freedom 7 in May 1961.

Born in 1923, Shepard attended the US Navy Academy at Annapolis from 1941 to 1944 (the normal 4-year training course having been cut by 12 months due to World War 2). He  initially served aboard the destroyer USS Cogswell – it then being a requirement that Navy aviators serve shipboard time prior to starting flying training -, rising to the rank of Air Gunnery Officer, responsible for the ship’s anti-aircraft guns and crews, a position he held while the Cogswell served critical roles in the Battle of Okinawa and off the coast of Japan.

In November 1945 he transferred to flight training school, and after almost washing out as a pupil, went on to  gain 3,600 flying hours  with more than 1,700 in jets, eventually rising to the position of Aircraft Readiness Officer on the staff of the Commander-in-Chief, Atlantic Fleet.

After his Mercury flight, In 1963 Shepard was grounded due to Ménière’s disease, an inner-ear ailment that caused episodes of extreme dizziness and nausea.This precluded him from flight involvement in the Gemini programme, although from 1963 through 1969 he was NASA’s Chief of the Astronaut Office with overall responsibility for astronaut training and mission selection.

In 1969, Shepard underwent successful surgery to correct his ear issue, and was returned to active flight status. He immediately lobbied his successor as Chief of the Astronaut Office, Donald “Deke” Slayton for a position on Apollo, and was initially earmarked to command Apollo 13. However, his “inexperience” in having missed the entire Gemini programme, and that of his crew as a whole, saw them “bumped” to Apollo 14 to allow them a greater amount of training.

Both Stuart Roosa and Edgar Mitchell were rookies, with Apollo 14 their first and only flight into space. Roosa had previously been a “smokejumper” with the US Forest Service, parachuting into remote area to combat forest fires, prior to transferring to the United States Air Force and training to be both a fighter pilot and an experimental test pilot.  On joining NASA in 1966, he was the capsule communicator (CAPCOM) for the tragic Apollo 1 fire, and also served on the support team for Apollo 9, working closely with Edgar Mitchell.

Mitchell was another Naval aviator, having entered the service in 1952 with a degree in industrial management.  During during his military flying career he gained a second bachelor’s degree in aeronautics and a doctorate in in aeronautics and astronautics. He also clocked an impressive 5,000 flying hours as both a front-line fighter pilot and a test pilot, 2,000 of those hours gained in jets.

Mitchell’s involvement with space activities actually started before he joined NASA, when in  1964 he was assigned to the US Air Force Manned Orbiting Laboratory (MOL), serving as Chief, Project Management Division of the Navy Field Office that was liaising with the Air Force, and also as an instructor in advanced mathematics and navigation theory for MOL astronaut candidates. When MOL was cancelled, he applied to NASA, and was accepted as a part of the fifth astronaut intake alongside Stuart Roosa.

Given it was the first mission to follow Apollo 13, there was a lot of media and political attention on Apollo 14, including pressure for it to launch on schedule. As it was, weather intervened on the launch day, causing the countdown to be paused for some 40 minutes – the first time such a delay had occurred with and Apollo mission. Launch eventually took place at 21:03:02 UTC on January 31st, 1971.

The pre-launch delay wasn’t considered to be a significant issue, as the mission was to take a faster trajectory to the Moon than previous launches, so the delay effectively left it running precisely “on time” compared to earlier missions. Following a require time in Earth orbit, the S-IVB third stage engines were-lit, pushing the mission on its way to the Moon.

Once en-route, the CSM – christened Kitty Hawk by the crew in honour of the Wright Brothers –  had to separate from the S-IVB, then turn through 180º to dock with the now-exposed Lunar Module (called Antares after the star Shepard and Mitchell were due to use as reference point when orienting their craft for its lunar landing) and then gently pull it clear of the rocket stage, which would then gently divert away from the Apollo vehicles flight path.

Roosa, as Command Module Pilot, hoped to set the record for competing this manoeuvre using the least amount of fuel. However, the extended docking mechanism in the nose of the Command Module had other ideas – it refused to latch onto the lunar module firmly enough to trigger the release of the pin holding the LM in place on the S-IVB. Over two hours Roosa repeatedly attempted to make an initial “soft dock” with the LM, but was repeatedly thwarted, leaving the crew and mission control agitated: if the LM could not be extracted by the CM, then the mission was over – and two mission failures in succession, even without any loss of life, would likely spell the end of Apollo.

Continue reading “Space Sunday: Apollo 14, 50 years on”

Space Sunday: rockets, water and spaceplanes

Starship SN9: three platform engine test firings in three hours.  Credit: Mary “BocaChicaGal”

After a build-up of excitement around a potential start-of-year flight for SpaceX Starship prototype SN9, things has slowed down somewhat – but the vehicle may now be on the brink of making its 12.5 km ascent to altitude and an attempt to land successfully after an unpowered “skydive” back towards Earth.

As I noted in my January 10th Space Sunday report, SpaceX had managed to accelerate the processing of SN9 in comparison to SN8 to a point where the majority of pre-flight checks for the vehicle – including a static fire test of the engines on January 6th –  had been completed in just a 2-week period following its delivery to the launch stand on December 22nd, compared to 2 months taken for prototype SN8 to reach the same point.

However, as I noted at the time, that static fire test was far shorter than had been expected – just 2 second in length, signifying a possible issue. This appeared to be confirmed when SpaceX attempted further engine tests between January 8th and January 12th, of of which had to be scrubbed for various reasons (including weather), before a further test was made on Wednesday, January 13th – and things took an unexpected turn: after the first brief test, two further tests took place within a 2-hour period for all three tests.

The three firings were apparently “test starts” of the three Raptor motors, rather than a full pre-flight static fire test of all three simultaneously. Following them, and a successful de-tanking of excess fuel, inspections of the motors revealed that two needed slight repairs, causing the company to swap them out for other units.

As part of streamlining starship operations, SpaceX have refined the processes related to engine swap-outs to a point where they can effectively be achieved within days rather than weeks, depending on the availability of replacement motor units – the actual physical removal of an engine can be completed in hours, as can the installation of a replacement. In this case, the work was done over a couple of days, the engines requiring replacement being removed from the vehicle and shipped out of Boca Chica before the replacements were delivered and installed, clearing the way for a final engine test.

This took place on Friday, January 22nd, when all three engines were ignited for several seconds before shutting down.

Outside of SN9, it appears work at Boca Chica has commenced on starship prototypes SN17 and SN18, and on the second Super Heavy booster prototype. Also, in my January 10th Space Sunday update, I noted that work had been discontinued on starship prototypes SN12 through SN14. Work has now commenced in dismantling those parts of SN12 that had been fabricated. This is likely due to the fact that SpaceX are iterating the design and construction of the prototypes so fast, SN12 had become effectively obsolete due to the materials used.

The rapid rate of iteration is also reflected in the move of a new fuel tank section – SN7.2 -, which has been moved to a test stand where it will  be pressurised to destruction in a similar manner to the SN7 and SN7.1, each of which also saw iterations in the basic tank design. SN7.2 in particular is built using 3 mm aluminium rather that the current 4 mm material in an attempt to reduce the overall “dry” mass of the vehicle.

In 2020, Musk raised the idea of launching starship / Super Heavy vehicle from sea platforms, suggesting this could be used for vehicles intended to reach orbit or in passenger-carrying sub-orbital transcontinental flights.. While passenger carrying point-to-point will not happen (for reasons I will explain at some point), evidence has emerged that SpaceX are planning to make sea launches a thing, and is in the process of converting two former offshore drilling platforms for use as floating launch platforms.

Aerospace Photographer Jack Beyer was the first to bring the news to the public eye after exploring the port of Brownsville, Texas, not far from the SpaceX facilities at Boca Chica whilst waiting for the SN9 static fire tests to resume. In particular, he spotted an oil platform apparently called Deimos (“dread”) undergoing extensive refit work. Not long after, a image captured over the port of Galveston, Texas, and dated January 13th revealed another rig with the name Phobos (“fear”), and which was later moved to Pascagoula, Mississippi, between January 17th and 22nd.

Phobos and Deimos are, of course, the names given to the captured moons of Mars, and the discovery of the two rigs sparked speculation that the platforms had been purchased by SpaceX.

The soon-to-be SpaceX sea launch platform for Super Heavy / Starship. Credit: Jack Beyer via NASAspaceflight.com

Michael Baylor from NASAspaceflight.com started digging into things using further images captured by Jack Beyer, and discovered that the two rigs in question were originally owned by the world’s largest offshore drilling / well drilling company: UK-registered and Texas-based Valaris plc (formerly ENSCO-Rowan).

Originally constructed in Singapore in 2008, the two rigs were originally called ENSCO 8500 (later Valaris 8500 and now Deimos), and ENSCO 8501 (later Valaris 8501 and now Phobos). However, following the company declaring bankruptcy, the company offered the platforms for sale and US 3.5 million apiece. The purchaser was company called Lone Star Mineral Development LLC, which had only formed in June 2020. Further digging revealed that one of the principals for Lone Star Mineral Development is none other than SpaceX Chief Financial Officer (CFO), who is also the head of the company’s Strategic Acquisitions Group, Bret Johnsen.

Wreathed in cloud, the Deimos arrives at Pascagoula, Mississippi, January 22nd. Credit: Brady Kenniston via NASAspaceflight.com

Both platforms are classified as “semi-submersible”, meaning they float on large pontoons that can be filled with water ballast that both settles them in the water to stabilise them while dynamic positioning water thrusters hold them in a precise location, making them an ideal launch platform, as does their deck loading of around 8,000 tonnes, means that are more than capable of supporting a Super Heavy  / starship combination and their fuel loads.

The work to convert the two platforms to support fuelling, payload integration, launch, and landing operations is extensive. As such neither is likely to be ready for use in 2021. However, once operational, they will effectively double the number of Super Heavy / starship launch facilities – SpaceX is currently building the first Super Heavy platform at Boca Chica, and have plans for a second. Multiple launch facilities will be essential in the future if SpaceX is to start to build towards the planned number of launches for the system..

Continue reading “Space Sunday: rockets, water and spaceplanes”

Space Sunday: SLS roars, LauncherOne flies and a mole dies

The Green Run hot fire test: the four RS-25D engines on the SLS-1 core stage running close to full power in the Stennis test stand, January 16th, 2021. Credit: NASA
Saturday, January 16th saw NASA attempt the Green Run Hot Fire Test of the first Space Launch System (SLS) core stage.

For those who might be unaware of it, the SLS is NASA’s next-generation heavy-lift rocket designed to undertake a range of missions, with the primary focus being the US Artemis programme to return humans to the Moon. Once operational it will be the most powerful launch vehicle commissioned by NASA.

The Hot Fire test formed the final phase of the Green Run test programme, a series of tests vital to clearing the core stage of the rocket ready for it maiden – and only – flight, planned for the end of 2021. The “Green Run” title refers to the fact the test would be the first time all of the components and systems of a core stage would be operated in unison, just as they would in the lead-up to and launch of an SLS rocket.

As such, the Green Run actually comprises a sequence of tests numbered 1 through 8 – each designed to test different aspects of the core stage, gradually bringing everything together as a unified whole and culminating in the hot fire test.

The Green Run test sequence for the first SLS core stage. Credit: NASA

All of the test sequences have been carried out at the historic B-2 Test Stand at NASA’s Stennis Space Centre, Mississippi, and while some issues were encountered along the way, both technical and due to the weather, so  eating into the “reserve time”  available for getting the first SLS vehicle assembled and onto the launch pad, by Saturday January 16th, all of them – including critical fuel loading and unloading (700,000 gallons of liquid hydrogen and liquid oxygen) test – have been completed and signed-off, allowing the hot fire test to go ahead.

Planned for a 8-minute duration – this being the total time the core stage would be expected to operate its engines during a launch – the test commenced at 22:27 GMT, after some last minute minor technical delays put the count-down on a lengthy hold. Ignition saw the four RS-25D engines ignite milliseconds apart from one another in the sequence 1,3,4 and 2, quickly building up to a combined thrust of just under 726,000 kg – somewhat less than the maximum thrust of 900,000 kg they will reach in an actual launch, but sufficient for the purposes of the test.

Ahead of the test, thousands of gallons of water pour through the flame pit beneath the test stand – water is used as suppression system to absorb the sound from the engines, preventing it from being reflected back onto the vehicle, where sound concussions might damage it. Credit: NASA

The long duration of the test had been intended to allow a comprehensive test of things like engine throttling down / up and gimballing (swinging) the motors in a manner that would provide steering in a flight. However, 67.7 seconds into the test something  – at the time of writing, NASA has yet to specify what – triggered the core stage’s automated safety systems, initiating a rapid and safe shut-down of the engines.

The RS-25 is one of the most powerful and advanced rocket engines in the world. Originally built for the shuttle, it is finding new life with SLS – a total of 16 former shuttle variants of the motor will be used to power the first four SLS launches. The four motors for this first core stage already have a distinguished flight career between them, having previously be used on a Hubble Space Telescope servicing missions, the mission that saw John Glenn return to space (STS-95 in 1998), and on the final space shuttle flight, STS-135 featuring the shuttle orbiter vehicle Atlantis (thus offering a direct link between the last flight of the Space Transportation System and the first launch of the Space Launch System). In addition, between them the four engines made six flights to the International Space Station prior to the end of the shuttle programme in 2011.

Four clean burns: the four RS-25D engines under thrust. Credit: NASA

Once those first 16 motors have been used, SLS will be powered by a new generation of RS-25 motor, built using the very latest technologies including components created using 3D printing which we decrease the complexity of the engines.

Despite the hot fire test lasting less than 68 seconds, managers and engineers monitoring the test were confident that they had gathered sufficient data to classify the run as a success, although it is not yet clear if a further test will be required, or whether the core stage can be dismounted from the test stand – originally built to test the core stage of NASA’s Saturn V rocket – and shipped to Kennedy Space Centre for integration with the rest of the vehicle.

All four RS-25 engines ignited successfully, but the test was stopped early after about a minute. At this point, the test was fully automated. During the firing, the onboard software acted appropriately and initiated a safe shut-down of the engines. During the test, the propellant tanks were pressurised, and this data will be valuable as the team plans the path forward.
In [the] coming days, engineers will continue to analyse data and will inspect the core stage and its four RS-25 engines to determine the next steps.

– NASA statement following the test

Future core stages won’t go through a similar Green Run; these tests were only required for the first core stage to confirm its design and gather vital data on its behaviour during its required operations. Instead, they will generally be fabricated at NASA’s Michoud Assembly Facility, New Orleans and then shipped directly to Kennedy Space Centre for vehicle integration with the rest of their launch elements in the famous cube-like Vehicle Assembly Building, used for the “stacking” of every Saturn  rocket (both the 1B and V) and every shuttle system.

Once integrated with its upper stage, solid rocket boosters and payload, the stage will participate in the Artemis 1 mission to send an uncrewed Orion vehicle to, around, and back from, the Moon at the end of 2021.

Continue reading “Space Sunday: SLS roars, LauncherOne flies and a mole dies”

Space Sunday: starships, dishes and microbes

A stunning image of Starship SN9 standing on the Boca Chica launch platform framed by a low Sun. Credit: Mary “BocaChicaGal”

In December 2020, and following the not-quite-successful flight of Starship prototype SN8, SpaceX suffered what might have been a further setback in their flight test plans for the Starship vehicle, when prototype SN9 toppled sideways whilst in the stacking facility at the company’s Boca Chica, Texas, construction and flight test centre (see: Space Sunday: the flight of SN8 and a round-up).

However, the vehicle was quickly righted and following examination, work commenced on repairing / replacing the damaged elements (notably one of the forward aerodynamic surfaces). This work proceeded at a surprising pace; so much so that on December 22nd, 2020, it was delivered to he Starship launch platform.

Since then work has continued at the same rapid pace, such that within the two weeks since its arrival on the stand, SN9 has completed the majority of its pre-flight checks that took around 2 months to complete for SN8. These included initial fuel tank pressurisation tests using inert liquid nitrogen (to test the tanks and structure for leaks), partial and fuel test fuelling operations, vent system tests, testing of the reaction Control system (RCS) thrusters that help maintain the vehicle’s orientation in the atmosphere and will provide manoeuvring capabilities in space, and even a full static fire test of the vehicle’s three Raptor engines, which took place on January 6th.

SN9 static fire engine test. Credit: Mary “BocaChicaGal”

Two tests were skipped in the process – but this is seen as not so much because the company is trying to make up for any “lost time”, but rather the result of growing confidence in the process of taking a prototype vehicle from fabrication to test flight. However, while the engine firing was successful, it was somewhat shorter than those for SN8 – the Raptors fired for less than 2 seconds – so it is not clear whether or not an issue was encountered, forcing a premature shut-down.  If this is the case, then it might be that further static fire tests may be announced ahead of any flight; if the brief firing was intentional, then it is possible a flight test could come within the next week or so.

As it is, the exact date of any actual flight test for SN9  – which will seek to repeat the 12.5 km altitude reached by SN8, but hopefully follow it with a successful landing – hasn’t been confirmed. However, to avoid a repeat of the SN8 crash, SpaceX CEO Elon Musk confirmed that the Methane header tank – a smaller tank designed to feed fuel to the Raptor motors during the landing sequence  – for SN9 and at least some of the prototypes that follow it will be “pressed” with helium (this is, helium will be forced into the tank in order to force the methane out and to the engines) in order to avoid any pressurisation issues. However, it is not clear if this will be the permanent solution to the problem, or an interim update to allow test flights to continue whilst SpaceX develop a more permanent solution to the problem.

A diagram showing Starship and Super Heavy prototype development. On the left, SN9 is complete, and awaiting its flight. SN10 is awaiting Raptor motor installation and the attachment of its aft flaps, and SN11 has yet to have its upper sections installed and is awaiting its tail flaps and motors. All of the major hull elements of SN12 have been fabricated but have yet to be assembled. The diagram also show the assembly of SN15, which is will in advance of SN13 and SN14, while to the right is the status (as of January 9th) of the first Super Heavy prototype. Credit Brendan Lewis

At the same time as pre-flight tests have been continuing with Starship SN9, work has been continuing with a number of further prototypes. SN10 very close to completion, with just engines and aft aerodynamic flaps to be mounted, and SN11 will be receiving its upper sections in the coming week. Further down the chain, SN15 is also progressing, as is SN16. These will likely be the first two prototypes fully fitted with the thermal protection system used to safeguard the vehicle’s hull during atmospheric entry. This doesn’t necessarily mean either will make an orbital flight – SpaceX will doubtless want to text how the entire thermal system holds up under atmospheric flight prior to committing to an orbital attempt.

However, work currently appears to be on hold for vehicles SN13 and SN14, and SN12 has yet to be stacked. Whether these vehicles will be completed remains to be seen: Musk has previously indicated that the SN15 vehicle and beyond will include “significant upgrades” compared to earlier vehicles, so it is possible SpaceX may opt to skip from SN11 to SN15 in the flight test programme.

An image demonstrating the relative size of SpaceX vehicles and the shuttle. Left: the Crew Dragon – capable of flying up to 7 into LEO; right: a starship vehicle with a shuttle orbiter alongside. The orbiter could carry up to 7 into LEO with up to 28 tonnes of cargo. Starship can carry up to 100 people + cargo or up to 100 tonnes (cargo variant) to LEO. A Tesla 4×4 and human are included for scale. Credit: Dale Rutherford

Puerto Rico Governor  Supports Rebuilding Arecibo

The outgoing governor of Puerto Rico, Wanda Vázquez Garced, signed an executive order on December 28th, 2020 backing the rebuilding of the 305-m diameter Arecibo radio telescope that collapsed in November 2020 (see:  Space Sunday: returns and a collapse).

The order states that US $8 million is to be “assigned and allocated” for removing the debris of the collapsed telescope and “remedial environmental” work be completed at the site. It further states that the Puerto Rico government wishes to see the development of a telescope with a larger effective aperture,  wider field of view and a more powerful radar transmitter to replace the original, thus providing the nucleus of “a world class science and education facility”.

Arecibo as it was: visible is the main dish with the central receiving platform suspended over it via the three towers. Credit: NASA

However, things are not as clear cut as this. For one thing, the construction of a new telescope is liable to cost more than ten times the funding stated in the order. It’s also not clear where the $8 million will come from; the order only suggests it could be provided through “state, federal and private sources (including public-private partnerships and state-federal partnerships)”.

More particularly, Arecibo is not under the funding auspices of the Puerto Rican government, but rather that of the National Science Foundation (NSF), which it turn is funded directly by the US government. Thus far, the NSF has not committed to any rebuilding / replacement at the site, nor have any funds been allocated by Congress in the 2021 federal budget – although the NSF has been directed to prepare a study / report on the telescope’s collapse, the clean-up operation and to determine whether a replacement / comparable facility should be established at the sit, together with the associated costs for doing so.

After the fall: the telescope after the collapse of the receiving platform (the wreckage of which can be see to the right of the disk. Also clearly visible is the scar where the collapsing platform and cables tore through the disk. Credit: NASA
NSF has a very well-defined process for funding and constructing large-scale infrastructure, including telescopes. It’s a multi-year process that involves congressional appropriations and the assessment and needs of the scientific community. So, it’s very early for us to comment on the replacement.

– Ralph Gaume, director of NSF’s Division of Astronomical Sciences

Continue reading “Space Sunday: starships, dishes and microbes”

Space Sunday: previewing missions in 2021

The uncrewed NASA Artemis-1 mission, featuring the first flight of the Block 1 Space Launch System (SLS) carrying an Orion MPCV at the start of a 26-day mission to and around the Moon, should occur towards the end of 2021. Credit: NASA

Despite the pandemic, 2020 proved to be a busy year for space activities, with a range of significant launches of both government-led / overseen missions and private sector launches. However, as busy and as challenging as it was, 2020 potential pales somewhat in comparison to what we should / will hopefully see in 2021. So, as with last year, I thought I’d kick-off Space Sunday in 2021 with a look ahead to some of the year’s  space missions.

Mars

2021 will see three new arrivals orbiting and landing on Mars.

The first to arrive will be the United Arab Emirates’ Hope spacecraft. Launched on July 20th, 2020 from Tanegashima Space Centre in Japan atop a H-IIA rocket, the mission comprises an orbiter vehicle designed to study the Martian atmosphere and climate.

Built entirely in the UAE, the mission marks the first attempt to operate an interplanetary mission by any West Asian, Arab or Muslim-majority country. It carries a range of science systems provided by the Mohammed bin Rashid Space Centre (MBRSC) and the University of Colorado Boulder with support from Arizona State University (ASU), and the University of California, Berkeley. Hope is due to arrive in an initial orbit around Mars on February 9th, 2021.

The UAE Hope orbiter Credit: Mohammed bin Rashid Space Centre via the New York Times

China’s Tianwan-1 (“Questions to  Heaven”) mission will be the next to arrive in Mars orbit. The precise date has yet to be confirmed, but orbital insertion should happen between the 11th and 24th February, 2021. It is an incredibly ambitious mission,  comprising a total of 13 science instruments and experiments, split between two distinct mission elements.

The first of these is the orbiter vehicle, which will commence operations almost immediately. It is tasked with producing Martian surface maps, characterising the Martian atmosphere – notably its ionosphere, measuring the Martian magnetic field, examining the composition of the Martian subsurface via radar, and imaging the surface of Mars in high-resolution. As a part of the latter work, the orbiter will carry out extensive surveys of the proposed landing zones for the second part of the mission: a lander / rover.

These will deploy some time around April  23rd. The rover’s mission is to examine the Martian sub-surface to a depth of around 100 metres using ground-penetrating radar and study of Martian weather systems. In particular, both elements of Tianwen-1 will aim to find evidence of current or past life on Mars.

The third mission that will arrive at the Red Planet will be the NASA Mars 2020 mission, comprising the rover Perseverance and the robot helicopter Ingenuity. Unlike the other two missions, Mars 2020 won’t spend any time in orbit: instead, it will proceed directly to atmospheric entry and delivering its payload to the surface on February 18th, 2021.

The primary goal of Perseverance will be to seek signs of habitable conditions on Mars in the ancient past, and will also search for evidence — or biosignatures — of past microbial life and water. As with Curiosity, the rover is powered by a nuclear “battery”, capable of keeping the rover operating for some 14 years. Based on the Mars Science Laboratory (MSL) Curiosity rover, it will be delivered to the surface of Mars in the same manner – using a “skycrane” system.

NASA Mars 2020 Perseverance rover and Ingenuity helicopter. Credit: NASA via the New York Times

Ingenuity, the helicopter will arrive on Mars attached to the underside of the rover. Some time in the first few months after arrival, the rover will deposit it on the surface, and it will then complete around 5 flights over a 30-day period. Fully automated, and lasting up to 3 minutes apiece, these flights will each carry Ingenuity up to 10 metres altitude and a distance of up to 600 metres. The primary aim of the mission is to test the ability of an automated aerial vehicle to support ground operations on Mars, in this case, helping to map the best driving route for the rover as it explores Jezero Crater.

The Moon

While America’s Project Artemis is unlikely to achieve its original goal of returning humans to the surface of the Moon by 2024, the coming years should see a number of significant lunar missions take place in the run-up to an eventual human return to our natural satellite.

In April, NASA will launch  CAPSTONE, the Cis-lunar Autonomous Positioning System Technology Experiment via a commercial electron rocket. A cubesat mission, CAPSTONE is intended to test and verify the calculated orbital stability planned for the Lunar Gateway space station.

In July a privately-funded mission in support of Artemis will deliver 14 NASA- funded science missions and 14 private-sector missions to the surface of the Moon, including a trio of rovers – one from the USA, one from Japan, and a novel mini walking robot from the UK called Asagumo. Originally a contender for the lunar X-Prize, the Peregrine mission has been expanded by NASA to test technologies that may be used in support of Artemis. It will be the first operational flight of United Launch Alliance’s Vulcan rocket.

On October 11th (or thereabouts) the Intuitive Machines 1 (IM-1) mission will  similarly deliver a NASA science payload to the surface of the Moon on the company’s NOVA-C lander.

An artist’s impression of the 3m tall NOVA-C lander on the surface of the Moon. Credit: Intuitive Machines

Launched via a SpaceX Falcon 9 rocket, the mission will target a relatively flat area near Vallis Schröteri in the Oceanus Procellarum (Ocean of Storms), where it will operate the package of 5 science systems on behalf of NASA. Overall, NOVA-C is designed to be a highly flexible lander system standing up to 3 metres tall and capable of delivering a wide range of small payloads to the Moon.

The end of the year should also see the first launch of NASA’s massive Space Launch System (SLS) rocket, intended to be the core workhorse for the Artemis programme, as well as offering a potential heavy launch vehicle NASA’s deep space aspirations.

The Artemis-1 mission, currently slated for November 2021, will be the first launch of a the Block 1 variant of the launcher. It will send an uncrewed Orion Multi-Purpose Crew Vehicle (MPCV) to the Moon in a 26-day mission that will include 6 days in which the Orion capsule and its service vehicle will be in a retrograde orbit around the Moon, followed by a return to Earth and splashdown. If successful, the mission will pave the wave for a crewed mission around the Moon in 2023.

October will see Russia make a return to with the launch of the Luna 25 (formerly Luna-Glob) lander combination on October 1st, 2021. Directly to land in the Boguslavsky Crater near the lunar south pole, the mission will characterise the nature of the crater floor, including the presences of any sub-surface water ice, and will attempt to obtain samples for on-board analysis.  The mission was renamed “Luna 25” to mark it as a direct continuance of the old Soviet Luna missions, the last of which – Luna 24 – took place in 1976.

India also intends to expand on its lunar presence in 2021 with the launch of its Chandrayaan 3 mission. A proof-of-concept mission, it is designed to deliver a lander and rover directly to the surface of the Moon (no orbiter vehicle will be used), and is a follow-on to India’s Chandrayaan 2, which successfully placed an orbiter of that name about the Moon (which is still operating), but saw a failure with its Vikram lander and Pragyan rover, lost when a software error resulted in them crashing into the Moon, rather than landing on it.

Continue reading “Space Sunday: previewing missions in 2021”

Space Sunday: conjunctions, radio signals and budgets

Jupiter (bottom and brighter) and Saturn as seen between the sails of the post windmill at Brill, Buckinghamshire, UK. Credit: Jim Dyson / Getty Images

Monday, December 21st, the winter solstice, saw Jupiter and Saturn reach their closest point of mutual approach to one another when viewed in our evening skies, in what is referred to as a great conjunction.

I covered the event in some detail in my previous Space Sunday report, noting that 2020 would see the two planets appear to come with 6 arc minutes of one another as they lay low over the south-western horizon in last light following sunset.

Caught via a camera with telephoto lens is Jupiter (l) with the Galilean moons also visible (from top left: Calisto, Io, Europa, and furtherest out, lower right, Ganymede). Saturn, to the right, appears as a distinct oval due to its ring system not being sufficiently resolved by the camera lens. Credit: Peter Jay / Getty Images.

Unfortunately, British weather being what it tends to be, I didn’t get to see things on the night thanks to cloud and rain.  To add insult to injury, the skies were clear just 40 km away, allowing friends to witness the event on the night, while the rain and cloud continued here most of the rest of the week, preventing me from getting a further look at the two planets as they dropped ever closer to the horizon. Ho hum.

Not of this Earth: Jupiter and Saturn with rings visible, as seen on December 21st from lunar orbit in an image captured by NASA’s Lunar Reconnaissance Orbiter. Credit: NASA

Fortunately, however, many around the world did have clear skies and captured the event using cameras equipped with telephoto lenses or attached to telescopes. I’ve included a handful of my favourites shots here.

The event was also captured on film by Jason De Freitas, who captured the space between Jupiter and Saturn being neatly “cut” by the passage of the International Space Station.

ET Probably Isn’t Radioing Us

A radio signal detected in a part of the sky that neatly aligns with our closest stellar neighbour,  Proxima Centauri, is unlikely to be of extra-terrestrial origin.

The radio burst was detected in  April-May 2019 by the Parkes Radio Telescope in  Australia, one of two radio telescopes used by the Breakthrough Listen project, which since 2015 has been listening to the one million closest stars to our own in an attempt to pick up artificial radio signals that might indicate extraterrestrial intelligence.

The primary 64-metre radio telescope dish of the Parke observatory, New South Wales. Credit: John Sarkissian

At the time the signal was detected, the telescope was engaged in radio observations of Proxima Cantauri, some 4.2 light years away, and a star known to have two planets orbiting it, one of which – Proxima b – is a rocky world about 1.7 times the size of Earth that sits within the star’s  habitable zone.

Parkes wasn’t listening for radio signals at the time they were picked up, but was engaged in radio observations of flare activity from the star. However, when detected, the signal was immediately intriguing due to its relatively narrow frequency – 982.002Mhz – which ruled out it being caused by known natural phenomena. In order to verify it, the Breakthrough Listen team received permission to “nod” the telescope dish.

This is a common technique used to verify radio signals that involves deliberately swinging the receiving dish away from a signal for a period of time, and then back towards it in order to see if it can be re-acquired (indicating it is not an artefact of the telescope itself), and to measure whether the signal has moved relative to the dish (which would indicate the source is likely in Earth’s orbit). In this case, the signal was reacquired, with measurements suggesting it could be emanating from Proxima b.

When news of the signal, and the on-going analysis to try to determine it’s likely point of origin / cause, was anonymously leaked recently, it was picked up by a number of media outlets and caused something of a stir. However, before ET Hunters get too excited, there are a number of additional facts to consider.

Firstly, it is devoid of any modulation – and so is likely devoid of any meaningful data, were it indeed to by an extra-terrestrial, which makes sending it a little pointless. Secondly, it was entirely transient; following the period of initial detection in April / May 2019, it was “lost”, and has never been re-acquired. Were it a deliberate signal, it would not be unreasonable to expect it to remain fairly constant in terms of detection, either by Parkes or (preferably) other centres around the world.

But the biggest counts against it being ET “‘phoning home” (or at least us), lies with the fact that the signal came from the general direction of Proxima Centauri. As our nearest, and oft-observed stellar neighbour, the star has been under observation for decades, and nary a once have we received anything amounting to an peep out of it that might suggest aliens are playing with radio systems there.

More particularly, however, is the fact that Proxima Centauri is a red dwarf star. As I’ve noted numerous times in these pages, these  M-class stars are prone to exceptionally violent solar flare. Given the close proximity of Proxima b to its star, these flares would likely, at a minimum, be bathed in hard radiation, and at worse, completely rip away the planet’s atmosphere within a period of around 100-200 million years. Therefore, it is highly unlikely the planet really is the point of origin for the signal.

An artist’s impression of Proxima b with Proxima Centauri low on the horizon. The double star above and to the right of it is Alpha Centauri A and B. Credit: ESO

instead, the most likely explanations for the signal are that it might either be something like the carrier wave from a long-forgotten piece of orbital debris of human manufacture or – mostly likely – actually originated on Earth, with conditions in the upper atmosphere serving to “bounce” it into the Parkes Telescope sphere of detection.

The Breakthrough Listen team and their partners certainly lean towards the latter as an explanation, although as noted,  they are still analysing the data gathered on the signal.

This is not a natural phenomenon—I haven’t seen the data, but if it passed BL’s tests then it’s too narrowband to be natural. It’s definitely caused by technology. But it’s almost certainly our own technology.

– Jason Wright, Professor of Astronomy and Astrophysics at Penn State University

Continue reading “Space Sunday: conjunctions, radio signals and budgets”