Tag Archives: MSL

Space Sunday: of selfies, sprites, and black holes

CuriosityCuriosity, NASA’s Mars Science Laboratory rover has departed “Marias Pass”, a geological contact zone between different rock types on the slopes of “Mount Sharp”, some of which yielded unexpectedly high silica and hydrogen content.

As noted in a recent space update in these pages, silica  is primarily of interest to scientists, because high levels of it within rocks could indicate ideal conditions for preserving ancient organic material, if present. However, as also previously noted, it may also indicate that Mars may have had a continental crust similar to that found on Earth, potentially signifying the geological history of the two worlds was closer than previously understood. Hydrogen is of interest to scientists as it indicates water bound to minerals in the ground, further pointing to Gale Crater having once been flooded, and “Mount Sharp” itself the result of ancient water-borne sediments being laid down over repeated wet periods in the planet’s ancient past.

Curiosity actually departed “Marias Pass” on August 12th, after spending a number of weeks examining the area, including a successful drilling and sample-gathering operation at a rock dubbed “Buckskin”, where the rover also paused to take a “selfie”, which NASA released on August 19th. It is now continuing its steady climb up the slopes of “Mount Sharp.”

A low-angle self-portrait produced from multiple images captured by the Mars Hand Lens Imager (MAHLI) camera mounted on the "turret" at the end of the rover's robot arm. The images were taken on August 5th, as the rover was parked at the "Buckskin" rock formation from which it gathered drill samples

A low-angle self-portrait produced from multiple images captured by the Mars Hand Lens Imager (MAHLI) camera mounted on the “turret” at the end of the rover’s robot arm. The images were taken on August 5th, as the rover was parked at the “Buckskin” rock formation from which it gathered drill samples

As it does so, initial analysis of the first of the samples gathered from “Buckskin” is under-way. It is hoped with will help explain why the “Marias Pass” area seems to have far higher deposits of hydrogen bound in its rocks than have previously been recorded during the rover’s travels. This data has been supplied by the Dynamic Albedo of Neutrons (DAN) instrument on Curiosity, which almost continuously scans the ground over which the rover is passing to gain a chemical signature of what lies beneath it.

“The ground about 1 metre beneath the rover in this area holds three or four times as much water as the ground anywhere else Curiosity has driven during its three years on Mars,” said DAN Principal Investigator Igor Mitrofanov of Space Research Institute, Moscow, when discussing the “Marias Pass” DAN findings. Quite why this should be isn’t fully understood – hence the interest in what the drill samples undergoing analysis might reveal.

A stunning vista: the slopes of "Mount Sharp" as seen by Curiosity as it commenced the upward drive away from "Marias Pass". Captured by the rover's Mastcam systems, the image shows an intriguing landscape, with the gravel and sand ripples typical of much of the terrain over which the rover has passed in the foreground. In the middle distance sit outcrops of smooth, dust-covered bedrock, above which sit sandstone ridges. On the horizon sit rounded buttes, rich in sulfate minerals, suggesting a change in the availability of water when they formed - click image for the full size version

A stunning vista: the slopes of “Mount Sharp” as seen by Curiosity as it commenced the upward drive away from “Marias Pass”. Captured by the rover’s Mastcam systems, the image shows an intriguing landscape, with the gravel and sand ripples typical of much of the terrain over which the rover has passed in the foreground. In the middle distance sit outcrops of smooth, dust-covered bedrock, above which sit sandstone ridges. On the horizon sit rounded buttes, rich in sulfate minerals, suggesting a change in the availability of water when they formed – click image for the full size version

The drilling operation itself marked the first time use of the system since a series of transient short circuits occurred in the hammer / vibration mechanism in February 2015. While no clear-cut cause for the shorts was identified, new fault protection routines were uploaded to the rover in the hope that should similar shorts occur in the future, they will not threaten any of Curiosity’s systems.

A Flight over Mars

With all the attention Curiosity gets, it is sometimes easy to forget there are other vehicles in operation on and around Mars which are also returning incredible images and amounts of data as well – and were doing so long before Curiosity arrived.

One of these is Europe’s Mars Express, the capabilities of which come close to matching those of NASA’s Mars Reconnaissance Orbiter. Mars Express has been in operation around Mars for over a decade, and in that time has collected an incredible amount of data.

At the start of August, ESA released a video made of high resolution images captured by the orbiter of the Atlantis Choas region of Mars. This is an area about 170 kilometres long and 145 wide (roughly 106 x 91 miles) comprising multiple terrain types and impact craters, thought to be the eroded remnants of a once continuous ancient plateau. While the vertical elevations and depressions have been exaggerated (a process which helps scientists to better understand surface features when imaged at different angles from orbit), the video does much to reveal the “magnificent desolation” that is the beauty of Mars.

Continue reading

Space Sunday: active Ceres, open Mars, and shooting stars

Dawn mission patch (NASA / JPL)Dawn, the NASA / ESA joint mission to explore two of the solar system’s three “protoplanets” located in the asteroid belt between the orbits of Mars and Jupiter, continues to intrigue scientists as it studies Ceres, the second of its primary targets.

As I reported in June 2015, Dawn is part of a broader effort to better understand the origins of the solar system and how the planets actually formed; all of which might give us greater understanding of how life arose here on Earth.

Launched in September 2007, Dawn arrived at Ceres in March 2015, after a 2.5 year transit flight from Vesta, its first destination, which it had been studying for 14 months following its arrival in July 2011. Because of their relative size – Ceres accounts for around one-third of the total mass of the asteroid belt – both of these airless, rocky bodies are regarded as dwarf planets, rather than “simple” asteroids. However, Ceres is proving to be quite the conundrum.

At the start of July, Dawn completed the first part of its high-altitude survey of Ceres and fired its low-thrust ion drive to start a series of gentle manoeuvres to reduce its orbit around from 4,400 kilometres (2,700 miles) to 1,450 kilometres (900 miles). It’s now hoped that from this lower orbit, the space craft will be able to discover more about some of Ceres’ more mysterious features.

One in particular has been the subject of much debate. It started when Dawn imaged a series of bright spots within the crater Occator as it made its initial loop around Ceres to enter orbit. Since that time, it has repeatedly images the bright spots, and their presence has also been confirmed by the Hubble Space Telescope.

A June 6th image of the bright spots within a crater on Ceres, captured by Dawn on June 6th, 2015, from a distance of

A Dawn spacecraft image of the bright spots within a crater on Ceres, captured on June 6th, 2015. With the vehicle now entering a much lower altitude mapping mission, it is hoped that even more detail on the spots  – and the faint haze discovered within the crater – will be obtained

Currently, it is believed the bright marks might either be salt deposits or water ice (the European  Herschel Space Observatory had previously found evidence of water vapour on Ceres).  However, while the science team aren’t leaning either way, their mission briefing on July 21st, leant some weight to the bright spots perhaps being water ice. This came in the form of an announcement that he 92 kilometre (57 mile) wide Occator has its own, very localised atmosphere focused around the bright areas.

The evidence for this comes from images of the crater taken from certain angles which reveal a thin haze covering around half of the cater, but not extending beyond its walls. Th thinking is that this haze is perhaps the result of the ice in the bright area – if they are ice – sublimating out.

However, if this is the case, it actually raises a further mystery: why the haze? Generally, such sublimation would lead to the resulting gases dissipating very quickly, without forming a haze. One hypothesis is that Ceres’ gravity, which is somewhat higher than might be expected for a body of its size) may be and influencing factor.

The 5 km high "pyramid" mountain pokes up above the limb of Ceres. Flat-topped, it has streaks of bight mateiral on its flanks giving the impression something has been flowing down it.

The 5 km high “pyramid” mountain pokes up above the limb of Ceres. Flat-topped, it has streaks of bright material on its flanks giving the impression something has been flowing down it.

The bright spots aren’t the only curious feature on Ceres. Dawn has also spotted numerous long, linear features whose cause is unknown, as well as one big mountain that mission team members have dubbed “The Pyramid.” This massif, about 5 km (3 mi) in height, and around 30 km (19 mi) across at its base, is oddly flat-topped and has streaks of bright material on one of it flanks, as if something has been cascading down the slope. What this might indicate has planetary scientists scratching their heads at this point.

With all the mysteries thrown up by New Horizon’s recently flyby of Pluto, and Dawn’s discovery of mysterious features on Ceres, it really is becoming a case that the tiny worlds of our solar system are perhaps the most perplexing.

Three years ago, in August 2012, NASA’s Mars Science Laboratory rover, Curiosity, arrived in Gale Crater, Mars. Since that time, the rover has made some remarkable discoveries, as reported in this blog over the years.

To mark the anniversary of the landing, NASA has launched two new on-line tools designed to open the mysterious terrain of the Red Planet to anyone with an interest in planetary exploration.

Experience Curiosity allows users to journey along with the one-tonne rover on its Martian expeditions. The program simulates Mars in 3-D, using actual data returned by the rover and NASA’s Mars Reconnaissance Orbiter (MRO). It also uses a  game-ready rover model based entirely on real mechanisms.

Experience Curiosity allows you to learn about the rover using a 3D model which can be manipulated and driven, using a WebGL application

Experience Curiosity allows you to learn about the rover using a 3D model which can be manipulated and driven, using a WebGL application

User are able to drive the rover, examine it, call up data on key components, witness the driving view from different cameras on the rover, and operated the robot arm. Activities are a little basic, but as this appears to be a part of NASA’s Eyes On project, capabilities may grow over time.

Mars Trek is a much more expansive tool – one which is actually being used in the planning for the Mars 2020 rover mission. It features interactive maps, which include the ability to overlay a range of data sets generated from instruments aboard spacecraft orbiting Mars, and analysis tools for measuring surface features. Standard keyboard gaming controls are used to manoeuvre the user across Mars’ surface, and topographic data can be exported to 3D printers to allow the printing of physical models of surface features.

The map view and be manipulated in 2D or 3D, data on various surface missions is provided, compete with the ability to zoom into the surface locations for these missions, making for a visually impressive model.

Continue reading

Space Sunday: Mars rocks, Ceres glitters, Pluto beckons

CuriosityOperations on and around Mars are resuming following the June 2015 conjunction, which saw Mars and Earth on opposite sides of the Sun, a time which makes reliable two-way communications hard-to-impossible due to the Sun’s interference, so vehicles operating on and around the Red Planet are placed in autonomous modes of relatively safe operations.

For the NASA rovers, Opportunity and Curiosity, this meant parking and waiting for reliable communications to be restored. However, now that Mars has once again emerged from “behind” the Sun, Curiosity is preparing to study the confluence of at least two different types of rock formation on the slopes of “Mount Sharp”.

As noted in my recent Curiosity updates, the Mars Science Laboratory (MSL) had been attempting to reach such a confluence, dubbed “Logan Pass”, but the terrain leading to that location proved more difficult from had been hoped. As a result, the rover was redirected towards another point leading up to higher elevations dubbed “Marias Pass”, and a small valley where the rock formations meet.

A mosaic showing the contact layers near the location dubbed “Marias Pass” on “Mount Sharp”. In the foreground is pale mudstome, similar to that studied by Curiosity at “Pahrump Hills” in 2014. Overlaying this stratigraphically is sandstone that the rover team calls the “Stimson unit.” The images used in this mosaic were captured by Curiosity’s left Mastcam on May 25th, 2015 (Sol 995 of the rover’s surface mission). The colour has been approximately white-balanced to resemble how the scene would appear under daytime lighting conditions on Earth.

The two types of rock are a pale mudstone, similar in appearance to the bedrock studied at “Pahump Hills”; the other is a darker, finely bedded sandstone sitting above the Pahrump-like mudstone, which has been dubbed the “Stimson unit”. In addition, the valley also has a sandstone with grains of differing shapes and colour which the science team wish to examine in more detail as well, having already identified a potential target within it they’ve named “Big Arm”.

“On Mars as on Earth, each layer of a sedimentary rock tells a story about the environment in which it was formed and modified,” NASA spokesman Guy Webster said during a status update on the mission which explained the science team’s interest in the area. “Contacts between adjacent layers hold particular interest as sites where changes in environmental conditions may be studied. Some contacts show smooth transitions; others are abrupt.”

Curiosity is expected to spend the next few weeks examining the rock formations before resuming its trek up the side of “Mount Sharp”.

Dawn Over Ceres

Dawn mission patch (NASA / JPL)

Dawn mission patch (NASA / JPL)

On Monday, June 30th, The joint ESA / NASA Dawn deep space mission completed the second of its orbital mapping phases of Ceres, which it has been carrying out since May at a distance of some 4,400 kilometres (2,700 miles).

During July, the spacecraft will engage in a series of gentle manoeuvres that will allow it to reduce its orbit to 1,450 kilometres (900 miles), ready to start a further surface mapping and investigation mission in early August.

Ceres has revealed it has a much more varied landscape that Vesta, its slightly smaller “sister” protoplanet, which the Dawn spacecraft studied over a prior if 14 months in 2011/12, prior to reaching Ceres in March 2015. One particular point of interest on the latter is a grouping of bright surface features located within a crater some 90 kilometres (55 miles) across.

The most recent images returned be Dawn of these spots reveals they are more numerous than had first been thought, with the largest approximately 9 km (6 miles) across.  It is believed these bright spots are the result of ice or salt, although other causes may be possible; spectra of the region should reveal far more as the spacecraft reduces its orbit.

A closer view of the bright areas inside a crater on Ceres, captured by the European imaging systems aboard the Dawn mission on June 9th, 2015 (credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

A closer view of the bright areas inside a crater on Ceres, captured by the European imaging systems aboard the Dawn mission on June 9th, 2015 (credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

In addition to the bright spots, the latest images also show a pyramid-like mountain with steep slopes rising to a height of about 5 km (3 miles) from a relatively flat area on Ceres, which has also provoked scientific interest. Ceres is also richly cratered, like Vesta; however, unlike Vesta, many more of the craters on Ceres have central peaks associated with them, evidence of their formation being the result of surface impacts. Images have also revealed evidence of other activities on the rocky, barren surface: slumps, landslides and lava-like flows, all indicative of Ceres perhaps having been somewhat more active in its formative years than Vesta.

Continue reading

Space Sunday: conjunctions, volcanoes and space stations

Solar conjunction: when Earth (r) is on the opposite side of the Sun or another solar system body - in this case, Mars (l)

Solar conjunction: when Earth (r) is on the opposite side of the Sun or another solar system body – in this case, Mars (l)

Solar Conjunction

June sees Mars an Earth move into a period of solar conjunction, when they are one opposite sides of the Sun relative to one another. These periods of conjunction occur roughly every 26 months (the last having been April 2013), can see communications between Earth and vehicles operating on and around Mars severely disrupted due to interference from the Sun.

To prevent spacecraft at Mars from receiving garbled commands that could be misinterpreted or even harmful, the operators of Mars orbiters and rovers temporarily stop sending any commands. At the same time, communications from the craft to Earth are also stepped down, and science operations scaled back. Nasa started to do this on Sunday, June 7th, and both ESA and the Indian Space Research Organisation will be doing the same. For the two Mars rovers, Opportunity and Curiosity, it means parking up and no driving until after full communications are restored. General science observation will, however, continue.

One slight difference in all this will be with NASA’s newest orbiter at Mars: MAVEN (Mars Atmosphere and Volatile Evolution). This arrived over Mars in September 2014,  with the primary mission of determining the history of the loss of atmospheric gases to space and gain insight into Martian climate evolution. As such, MAVEN will continue monitoring the solar wind reaching Mars and making other measurements. The reading will be stored within the orbiter’s memory system and transmitted back to Earth once normal communications have been restored.

MOM Studies Mars’ Volcanoes

Mars: The north polar ice cap, the three massive craters of the Tharsis volcanoes forming a diagonal line in the centre, the mighty "boil" of Olympus mons to their left and the 5,000 km long Vallis Marineris to their right

Mars: The north polar ice cap, the three massive craters of the Tharsis volcanoes forming a near-vertical line in the centre, the mighty “boil” of Olympus Mons to their left and the 5,000 km long Vallis Marineris to their right (image courtesy of ISRO)

Another mission that hasn’t gained much attention since also arriving in orbit around Mars is India’s Mangalyaan (“Mars-craft”) vehicle, which reached Mars on September 24th, 2014. Referred to simply as the Mars Oribiter Mission (MOM) by most, the vehicle reached Mars just 2 days after NASA’s MAVEN orbiter, and like that craft, a part of its mission is focused on studying the Martian atmosphere.

MOM also carries a high-resolution surface imaging camera, and this has been busy returning some magnificent picture of Mars, including the brilliant picture of the planet reproduced above, which shows the north polar ice cap, the almost vertical line of the three massive Tharsis Bulge volcanoes of Ascraeus Mons, Pavonis Mons and Arsia Mons in the centre, the massive rise of Olympus Mons, the largest volcano in the solar system to their left, and the 5,000 kilometre scar of the massive Vallis Marineris to their right.

MOM’s camera is also capable of producing 3D images, and an example of this capability was released by ISRO on June 5th in the form of a dazzling image of Arsia Mons, the southernmost of the equator spanning Tharsis volcanoes. The image was actually captured on April 1st, 2015, and has a spatial resolution of 556 metres, and the camera some 10,707 kilometres from the surface of Mars when the picture was taken.

The mighty Arsia Mons on Mars, largest of the three Tharsis Bulge volcanoes. The image shows a deliberate vertical exaggeration to the volcano's slope

The mighty Arsia Mons on Mars, largest of the three Tharsis Bulge volcanoes. The image shows a deliberate vertical exaggeration to the volcano’s slope (image courtesy of ISRO)

To give some idea of the scale of this massive shield volcano, it is 435 kilometres (270 mi) in diameter at its base, rises some 20 kilometres (12 miles) in height compared to the mean surface elevation of the planet, and is some 9 kilometres (5.6 miles) higher than the plains on which it sits. The caldera crater at its summit is 110 km (72 miles) across.

Continue reading